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ABSTRACT

The description of a phase model which solves the equations of wave propagation through the
approximation of the mild slope is presented. The model, developed in the context of the “Litoral
Project Model of the Coastal Zones - LIZC” , performs a data processing that allows the transformation
of a completely linear waves (no sediment transport) to a nonlinear wave in order to model sediment
transport in shallow areas properly. In the simulation all possible sea states of a particular period are
used, bearing in mind not only the influence of waves on the bottom, but also the effect of bottom on
the waves; obtaining the evolution of the bathymetry for the period under study.
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RESUMEN

Se presenta la descripcion de un modelo de fase que resuelve las ecuaciones de propagacion del
oleaje mediante la aproximacion de la pendiente suave ("Mild Slope”). El modelo, desarrollado dentro
del marco del proyecto del modelo Litodinamico de la Zona Costera - LIZC, realiza un tratamiento
de los datos que permite la transformacion de un oleaje completamente lineal (sin transporte de
sedimentos) en un oleaje no lineal, permitiendo asi la modelacién del transporte de sedimentos en la
zona mas somera. En la simulacion se utilizan todos los posibles estados de mar de una determinada
época, teniendo en cuenta no solo la influencia del oleaje sobre el fondo, sino también el efecto del
fondo sobre el oleaje; permitiendo asi obtener la evolucién de la batimetria para la época en estudio.
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INTRODUCTION

The numerical models of wave propagation
try to simulate several mechanisms involved
in the transformation of the waves. In coastal
areas the dominant mechanisms are wave
shoaling, refraction, and diffraction due to
changes in the bathymetry or due to structures,
reflection in the coastline, structures and
changes in bathymetry, dissipation of energy
due to breakage of the waves or friction with
the seabed, interaction wave-current and wave-
wave interaction. Except on extraordinary
occasions, for very simple cases, it is not
known in advance which of these phenomena
are dominant for the objective pursued. The
numerical models seek, in a computationally
efficient way, to represent reality as efficiently
and accurately as possible.

In general, mathematical models of wave
propagation can be separated into two
types: i) conservation models of mechanical
energy and ii) conservation models of mass
or momentum. Both types can incorporate, in
a more or less appropriate manner, most of
the mechanisms described above. However,
energy models cannot capture the effects
of diffraction and reflection caused by the
variation of the seabed, and coastal structures.
In contrast, conservation models of the mass
or momentum are unable to incorporate
wave-wave interaction induced by the wind
and, in addition, are computationally more
expensive. The research presented focused on
the propagation equation for mild slope.

The equation for mild slope, hereafter
MSE ("Mild Slope Equation"), is an effective
conservation model of mass when simulating
the wave shoaling produced in a coastal area
in combination with refraction, reflection and
diffraction, so it has become one of the most
used equations since it was introduced by
Berkhoff (1972). The model was decoupled
by Copeland (1985), in a pair of equations
in partial derivatives of the first order,
obtaining the hyperbolic model and reducing

the computational costs of solving the initial
elliptical model. Since then, there have been
many researchers who have demonstrated the
ability of hyperbolic MSE to describe the waves
in the coastal zone (Song, Zhang, Kong, Li,
and Zhang, 2007; Suh, Lee, and Park, 1997;
Bokaris and Anastasiou, 2003; Lee, Park, Cho
& Suh, 1998).

To solve numerically the proposed
equations, implicit methods are generally used
for temporal integration. Even so, numerical
instabilities can appear, so it is usual to use
artificial filters capable of absorbing these
instabilities. However, the use of numerical
filters causes a damping of the solution,
which may alter the accuracy of this solution.
Following the work of Galdn, Simarro, G.,
Orfila, Simarro, J. & Liu (2012), this research
has opted to use an explicit numerical scheme
Runge-Kutta of 4th order for the temporal
evolution, using an approximation for spatial
derivatives up to order O (Ax2), where Ax as
the mesh size.

STUDY AREA

Two different scenarios were used to analyze
the performance of the model. The first makes
use of the bathymetry of the experiment by
Galan et al., (2012), and is described later. For
the second study scenario, the bathymetry of
the Galerazamba-Colombia sector, provided by
the Caribbean Oceanographic and Hydrographic
Research Center-CIOH, was used. This zone is
a sector without anthropic influence in the local
scale, with a coastal spike that interacts with
the terrestrial fluvial regime of the Ciénaga El
Totumo and with the wave regime; presenting
a strong diffraction at the tip of Galerazamba
(Figure 1).

METHODOLOGY

This section contains the formulations of
the model for the hydrodynamic and sediment
transport modules, as well as some numerical
experiments for the verification of the model's
performance.
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Figure 1. Study area.

Numeric scheme

Equations: Cartesian coordinates

As already mentioned, in this investigation,
the mild slope equations MSE, in Cartesian
coordinates, were used and given by Copeland
(1985):

Lo Om 0P 0Q _

— —~ 1
cotTaxtay =Y (1a)
dapP an
il a_ 1b
at Tl =0 (1b)
a0 on
E+cha—y—0, (1c)

where 7 is the elevation of the free surface
with respect to the average level, C and Cg are the
wave velocity and the group velocity respectively,
and P and Q are the vertical integration of the
horizontal velocity of the particles in the x and
y directions respectively, so the bathymetry is
incorporated in the above mentioned equations.

Internal generation function

In order to avoid the problems derived from
considering the waves as boundary conditions and
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to enable wave generation through the energy
spectrum, the derivation of an internal generation
function is presented. Following the work of Tong
Shen, Tang and Cui (2010), the inclusion of the
source function in the continuity equation was
considered in such a way that, being s the source
term, it can be written:

C,on 0P 9Q

! —~ = 2
C ot ox oy (23)
apP an
ar tClog =0 (b)
aQ an
E+CCQ$—O, (20)

The solution of the previous equations, in its
homogeneous version, can be written as:

n = noexp(i(k,x + k, — wt)), (3a)
p = poexp(i(k, x + ky, — wt)), (3b)
g = qoexp(i(kyx + ky — wt)), (3c)
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being i = +—1 being the imaginary constant
and where k? = kZ + ki must satisfy the dis-
persion relation, that is :

Furthermore, pg Y qo must comply:

_ CCgKxMo _ CCgKxMo
Po=— _ —,9Q=—_

w w

Itis assumed that being i anywhere between
n,p,q 0 s, for the full case you can write:

¥ (xy,t) = P () expli(ky, y — wb)],
with |k| < k and so the equations (2) are left:
—iwCyi + Cp' + ik, Cq = c8,
—iwp + CCyh' = 0

~iwq + ik, CCyh = 0,

or:
(k2 - kf,)ﬁ +7" =iks§/C,,
b= —iCCyi' /o,
4 = kyCCyii/w,
We proceed to the solution of the equation:

(k% — k2)A + 7" = ik§/C,.

Gy (x, 0) is considered the solution for a pulse
in x = p,I.e., solution of:

(k? —k2)h +49" = 6(x — o).

To satisfy the equation automatically at all
points except in x = 9,

six > p;

Gn _ {an exp(ikx (x - Q))' (4)

a, exp(ikx(g - x)), six < p;

giventhatkZ = k? — kJZ, orthatky = Vk% — k3.
The missing point is x = 9. Integrated in X for
o” ao™:

+ +

=1.

4

K2 —k§f Gydx + Gy |°
-

+
Automatically f;_ Gpdx =0, and therefore it

must be imposed G’n |§J: =1, le.,2ikea, =1
Now:

R ik [T R
(x) = | Go (x,0) 3 (0)do (5)
g v —oo
and it is considered that:
$(0) = D exp (—Bo?), (6)

Where D must be determined and 8 = 15k2.
Substituting and operating, for x » +oo, gives:

ik
lim A(x) = C—Dlan exp(ik,x),

xX—>+00
9

(7)

Where 1= ./n/B exp(—k2/4B). Since you
want nyexp (ik,x) en x - +oo, it is reached:

_ CygNo _ kaCgTIO
ikla, Kkl 7

And the source function is:

s(x,y,t) = D exp (—Bx?) sin (k,y — wt) 9)
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This ensures that at a certain distance from the
source, the generated waves will possess the required
characteristics of wave height and frequency.

Boundary conditions

In this model, two different contour conditions
were implemented:

e Absorber frontier: The details for the
implementation of the absorber frontier
are explained below.

e Completely reflexive border: The
implementation of this type of border has
implications on the derivation matrices
(see spatial discretization section) since

it is imposed:

an
— = P 1= 1
35 1L 0, 0 (10)

Where ¢ L is the direction perpendicular
to the boundary and P is the flow in the
perpendicular direction.

Numeric scheme

If you consider x = {x,Yy}, the equations (2)
they can be rewritten as:

Yo(ne) = Eo(p) + s(t, x) (11a)

Po(pe) = Fo(n) + d(n, p) (11b)

Where p = {P,Q} and dis an artificial term
for the absorption of outgoing waves of the do-
main. This additional term, following the work of
Israeli and Orszag (1981), has the form:

d=—-wp+ w,VV.p + w; /%n

The functions w; are space-dependent and
for example, in the case of waves propagating in
the positive x direction, for a buffer layer between
X, and x; they are given by w;, = ¢c;wf (x), with

(12)

Cc a constant to be determined, w the dominant
frequency and

exp[(x — xa)/(xp — x4)]* — 1
exp(1)—1

fl) =

In the work of Galan et al. (2012)
satisfactory results were obtained for values of
¢i=75yc, =c3 =0, so they were taken as
initial values.

Spatial discretization: matrix notation

Following the method of the lines, equations
(10) are initially discretized in space. If we
consider a uniform mesh of n nodal points defined
by their coordinates x and y, and considering the
column vectors 17, P y Q, containing the n values
of the variables in question, we can write the
solution vector, f, as:

=

In addition, you can consider the derivation
matrices D, y D), in the direction x and y
respectively (dimension n x n) in such a way
that, for example, you can write:

on
a = D,n.

Note that the construction of the derivation
matrices will depend on the degree of approxi-
mation considered. With this the operator’s gra-
dient (gr) and divergence (dv) are given by:

gr = (g;) dv= (D, D,).

Using this notation, equations (11) can be
written as:

L.f, = R.f+ X(t,7,p). (13)
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The matrices L and R are:

L 0
b= (ot 1) R )
_ <0nxn Ri> ) "

R21 Oznx2n /°
With

L, = C4/C, (15a)
Lz = Ipp s (15b)
R,, = —dv, (15¢)
R,; = —CC,gr. (15d)

For more information about the construction
of the matrices involved, consult Galan et al.,
(2012).

Temporary integration: explicit scheme Run-
ge-Kutta of 4th order

Equation 15 is a linear system of partial
differential equations for the nodal values of the
unknowns. This system can be rewritten as:

f,=Llr(f), (16)

Where r= R.f + X(t,n, p).For reasons of
stability discussed below, an explicit fourth-or-
der Runge-Kutta scheme (RK4) is chosen for the
temporal integration, being fn the solution at
the time t,, = t, + nAt you can write:

K, + 2K, + 2K; + K,

ol = £ 4+ At c : (17)
Where:

K, = L L.r("f"), (18a)

K, = L7Lr(t" + At/2,f" + AtK,/2), (18b)

K; = L7Lr(" + At/2,f" + AtK,/2), (18c)

K, = L7Lr(t" + At, f" + AtK3). (18d)

Therefore, in each step of time itis necessary to
solve 4 systems of equations where the matrices
of the system are diagonal and dispersed.

Linear stability

If the source terms and amortization terms in
expression (16) are eliminated, we have:

f,= A.f=(L"LR).f), (19)

For the numerical model to be stable, it
must be imposed that all the eigenvalues of the
matrix A, Vj, multiplied by the temporal step
At, represented in the real-imaginary plane, are
found within the stability region of the method of
chosen integration. Figure 2 shows the stability
region for the 3rd order Adams-Bashford scheme
(AB3), for the 4th order Adams-Moulton scheme
(AM4) and for the 4th order Runge-Kutta scheme
(RK4). As can be seen, the region of stability of
greater extension corresponds to the method of
4th order, which is why it has been chosen for the
present work as a method of temporal integration
allowing greater values of the temporal passage,
and therefore, a higher computation speed.

From Figure 2 it can be seen that, by defining
Vmax = Max |v;|, the RK4 method provides sta-
ble schemes for:

UnmaxAt < 2,8278, (20)

This can be considered as a CFL condition
necessary for stability. In one dimension, in the
case of a flat bottom, the value of Vmax depends
on w, g, h and Ax; in addition to the order of
the approximation used for the computation of
the spatial derivatives, o, and also the number of
nodes, n. By dimensional analysis:
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Figures 3 and 4 show the behavior of the
function f, for different values of T; and T,
In both cases, n = 5 has been taken, given that
the influence of n has been proven to vanish for
values of n=20.

As can be seen, the stability function f; is
independent of the group value 7. Also, for high
values of the group 1T, , the function tends to zero;
while for small values, it becomes constant with
limits:

1,0000, 2°orden en espacio

1,3722, 4°orden en espacio (22)

lim fx={

According to expressions (19) and (20), the
temporary step should be chosen so that:

\ ghAt < 2,8278’ (23)
Ax fx

Or what is the same, in 1D, the Courant-Frie-
drich-Levy (CFL) condition remains as:

RKA
2 AMA
< 3
20 =
E
Df
-4 0 2

Re(v At)

Figure 2. Stability regions for the 3rd order Adams-Bas-
hforth scheme (AB4), for the 4th order Adams-Moulton
scheme (AM4) and for the 4th order Runge-Kutta sche-
me (RK4).

+ ghAt < {2,828, 2° orden en espacio, (24)
Ax " (2,061, 4°orden en espacio.

In the 2D case, the stability analysis is similar,
starting from the dimensional analysis (for n
large enough) we have:

T3 (25)

With As? = Ax? + Ay?. taking Ax =Ay the
function fs presents as limits:

2,0000, 2°orden en espacio, (26)

lim fo = {2,7444, 4° orden en espacio,

Obtaining as a condition CFL in 2D:

J ghAt - {1,414, 2° orden en espacio, 27)
As 711,030, 4°orden en espacio.

For values of Dx # Dy a similar stability
analysis can be carried out, obtaining different
CFL conditions.

0.5 0.5

0 0
10° 107 10" 10° 10' 10° 10° 10° 107 10" 10° 10" 10° 10°
l-11 HZ

Figure 3. Behavior of the function fx for derivatives of
order 2. It has been taken n = 50 since it is observed
that fx stops depending on n for values above 20.
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Sediment transport

Modification of breaking waves

The hydrodynamic module propagates
wave trains from deep water to shallow
water. Although the model solves the linear
equations under the mild slope hypothesis,
when the camber of the wave is sufficiently
high, the wave undergoes a rupture process,
dissipating energy and increasing the solid
flow in the surf zone.

0.5 0.5

0 0
10710 10" 10° 10" 10° 10° 107107 10" 10° 10" 10° 10°
n1 112

Figure 4. Behavior of the function fx for derivatives of
order 4. It has been taken n = 50 since it is observed
that fx stops depending on n for values above 20.

To simulate numerically this process, an
artificial dissipation of energy has been added,
so that a "sponge layer" is applied, through the
variable Csrotura » internal to the domain, whose
value will be given by:

Cs,rotura = min{cs,l' 2} ’

! 0.5 si%ge
Csa = (M_E)' - n ’
h S]T>E

Where € is a parameter to calibrate. For the
previous numerical results a value ofe = 0.3. has
been taken.

Expressions used to obtain the speed in the
background

From the simulation carried out with the
hydrodynamic module, the free surface, n and
the variables P and Q are obtained for each point,

32

as shown in Figure 5. Since wave generation is
carried out for multi-chromatic wave trains, it
is required that the exit time of the model is a
multiple of the wave periods considered. For the
example considered, since a bi-chromatic wave
is being generated, with periodsT =5sy T = 7s,
the data output will have at least a duration of
tnax = 35S.

From the time series of the variables P and Q,
the unit vector that defines the direction of the
wave vector can be obtained,

, k = |k|ek = ﬁk,zf + k}z,ek

e, = {cos®,sin@}, ©= arctan%
According to Airy's theory, for a progressive
wave (x = {x,y}), the free surface is:

n =1 cos(k .x — wt),

Being "o the wave amplitude and @ = 2m/T
the frequency. In the case of a wave train, the
surface will be given by:

n= Znoji cos(k; .x — w;t),
7

Where the sub-indice "i" indicates the it
component of the generated wave train. Likewise,
the horizontal velocity, u = {u,v} for a mono-
chromatic wave will be given by:

cosh[k(h + z)]

Sinh (kA) cos(k.x — wt),

u(z) =now

Where h lis the depth at which the wave
propagates. From the above, the velocity in the
background z = —h will be:

cosk.x — wt

U = @ g h(kh)
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That is to say:

u;, = nw/sinh(kh),

However, for shallow waters, where the
transport of sediments is more significant sin
(kh) = kh, and therefore:

w = e _nc
P kh T h

Where C is the speed of the wave. In this
way, the velocity history for the same point
shown in the Figure 5 is shown in the Figure 6.

It can be shown that, as it is a linear wave
propagation model, the temporal averages
of the velocities are zero, and therefore,
sediment transport will also be zero. Hence, a
modification in the series of speeds must be
introduced according to the Stokes theory. For
a progressive (linear) monochromatic wave,
defined by its free surface and speed as:

n =n cos(kx — wt),
Up = Upy cos(kx — wt),
Vy = Vp o cos(kx — wt),
It can be verified that, according to the Stokes

theory, the speed under the crest and under the
trough of the wave will be given by:

Ub,cresta = Ub,oa' Vb,cresta = Vb,O,ar

Ub,seno =(2- a)Ub,O' Vb,seno =(2- a)Vb,O,
Donde:

Hg
a=1+03->

~.V_.-
-5 L
0 10 20 30 40
tiempo (s)
0.2 T T T
o A D S
E oA Ly Y
g % v v ¥
0.2 h N A
0 10 20 30 40
tiempo (s)

Figure 5. Example of time series for introduced waves
of T=5syT=17s

In the previous expression, H, is the significant
wave height. In this way, from a linear (symme-
tric) wave, a non-linear wave can be assimilated,
with non-zero sediment transport. Thus, for each
point the procedure followed will be:

1. Get the time series of velocity in the back-
ground for the propagated wave

2. Find Hs for each point and with it the value
of a

3. For each point, obtain 19, Uy Y Vo as the
mean value of the amplitude of the speed for
the different propagated waves

4. Assimilate the propagated wave to a
monochromatic wave of amplitudes for free
surface and velocity 1o, Upo Y Vp o in crest and
trough

—~ " ~ ~ [a}
[P ol P . Ll |
= 04 Y f‘v L
2 v 1% ) v hd
0 10 20 30 40
tiempo (s)
5 T
% o AN A N
= 1 LS '\/\\, . V, T
=) v k9
-5 L L L
0 10 20 30 40
tiempo (s)
5 T T T
@ YA NN
Of Y ) 4
S} LN\ " \N\v "
-5 L L R
0 10 20 30 40
tiempo (s)

Figure 6. Example of time series of velocities in the
background for introduced waves of T =5syT =7s.
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Expressions used to obtain sediment tension and
transport

The tangential stress transmitted to the bac-
kground can be expressed as:

T =lfU2
b pr 8

Where p is the density of the fluid, fw is the
coefficient of friction and Uy is the instantaneous
velocity near the bottom. For rough turbulent
flow, in Johnson (1996), the coefficient of friction
was expressed as:

A -0.19
fw = exp [—6 + 5.2( b ) ],
k.S'W

Where Ap is the wave amplitude at the
bottom and kg, the equivalent roughness, which
can usually be taken as kg, = 2d5, where ds,
s the average sediment size. For the previous
expression:

H/2
Ab = — )]
sinh(2kh)

Where H = 21, is the height of the waves.
For the calculation of solid transport the for-
mulation of Van Rijn and Kroon (1992) will be
used, where the solid flow of instantaneous bac-
kground in m? / s will be given by

qp(t)
dsods_(()),fu *

Ty — TC)3/2
)

Cc

Since T, is the critical tension at the
beginning of the movement, obtained by means
of the Shields parameter, and:

With v the dynamic viscosity of the fluid and
A = (p; —p)/p the submerged relative density.
The critical tension of the beginning of the mo-
vement can be found using the abacus of Shields
(1936), for example:

34

T 02 4054 [1 ( dgb?f)]
———=——+0. —exp|— :
pglds,  ds. 23

Modification of the bathymetry

For the modification of the bathymetry
it is assumed that sediment transport was
maintained during the considered sea state, so
that once the value of qp(t), the average value
in each point in vector form is found, that is
to say:

t=tmax

j qb(t)dt €k.

qp =

tm ax

For the modification of the bathymetry the
formulation of Exner is used, where:

dh _ 1 V.o
ot 1-n'

So, considering Euler's method for temporal
integration, we obtain:

oh
A = "+ At—,
Jat

Numerical examples:

ID source function and absorbent conditions

In this numerical example we try to show
the accuracy of the generation of the source
function in 1D. To do this, a monochromatic
wave train on a flat background is generated
and compared with the Airy solution (linear
wave theory). For the example, we have taken
a wave period T = 0,55 and an acceleration
of gravity g =9,8m/s? propagating over a
depth of h ={1,10,25,50}. The linear theory
of Airy yields values of wavelength and
celerity collected in table 1. It is desired that
the wave to be generated has an amplitude
of ny=1m. The stability condition for all
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cases would be in
n=1000y dx = 0,25m.

CFL=0,9con o =4y

Figure 7 shows the amplitudes obtained at
the different depths compared to the amplitude
required for a time t= 10T, sufficient for the
wave to reach the contour. In all cases, the wave
generated has the required amplitude, and the
generation in case 1D is validated. In the same
way it is verified that the absorption function also
works properly in both frontiers (the generation
takes place in the center of the domain and both
borders are absorbent).

Table 1. Values of wavelength and celerity calculated
with the Airy term. The period T =0,5s and the
gravity g = 9,8m/s? remain constant.

h(m) A airy (m) C (@iry (m/s)
5 30.323 6.064
10 36.614 7.322
25 39.035 7.807
50 39.060 7.812

2D source function and absorbent conditions

To verify the proper functioning of the source
function in the 2D case, the same example as in
generation 1D (previous section) will be taken,
considering only the case where h = 5 m. The
angle of incidence is 30 ° and the length in front
is 50m.

As in the case 1D, the amplitude of the wave
is the required. In addition, the angle of incidence
coincides exactly with that imposed, thus validating
the function of internal generation of waves in 1D
and 2D. The absorbent boundary conditions do
not introduce instabilities or fictitious waves in the
study domain (Figure 8).

Case study: Cone shaped emerged island and
reflective conditions

For the study of the introduction of the
coastline and the treatment of these borders,
the bathymetry of the experiment by Briggs,
Synolakis, Harkins and Green (1995) has been
implemented. It is a cone shaped island emerged
in a tank of 25 m long and 30m wide and a
depth of 0.32 m. The island is centered at the

pointxc = 13m e yc = 15m and has a base
diameter of 7.2m. At the level of the free surface
the diameter is 4.64m and in the upper part it is
2.2 m (the inclination of the slopes of the island
is 1: 4). The boundary conditions have been
considered as purely reflexive and as an initial
condition a solitary wave is introduced (test 3 in
Briggs et al., 1995) of the form:

n(x,t = 0) = Hsech? [y(x — xc)], (28)

With y =,/0,75H y xc and xc being the
center of the solitary wave. In the case considered
H = 0,20m. Figures 9 and 10 show the free surface
at different moments of time. As can be seen, both
the purely reflexive conditions and the treatment
of the internal islands and coastlines are working
correctly, not generating instabilities in the model.

n (m)
L o

n (m)
o

5‘0 l(‘)O 1;0 200 250
x(m)
Figure 7. Generation of 1D monochromatic wave with
1DconT =5sy g =9,8m/s? on a flat bottom of different
depth. Values obtained for a time t =10T.

-2
0 10 20 30 40 50 60 70 80 90 100
tiempo(s)

Figure 8. 2D monochromatic wave generation with
T =5syg =9,8m/s? on a flat bottom of depth h =
5m with angle of incidence @ =30°. Top screenshot
for time ¢ = 10 s yand target point marked with black
circle. Below temporary elevation series detected at
target point.
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time = 5.00 seconds

x(m)

time = 9.99 seconds

Figure 9. Case example: cone shaped island (1/2).

RESULTS

Previous Results

To check the correct functioning of the
model, a calculation grid was generated in the
Galerazamba area, whose characteristics are
shown in Table 2.

The introduced wave is a bi-chromatic wave
train with periods of 8 and 10s respectively and
wave heights of 0.8 m for both components
(expected maximum wave heights of 1.6m). The
sea state is considered with a duration of 3 hours.
The Figure 11 shows the initial bathymetry of
the study area. Wave generation occurs in deep
water, more specifically at x = 300m.

Table 2. Characteristics of the mesh used in the simulation for the Galerazamba area.

Characteristics
Number of mesh points in the direction of wave advance

Number of mesh points in a direction perpendicular to the wave advance

Mesh resolution in the direction of wave advance

Resolution of mesh in direction perpendicular to the wave advance

Wave incidence angle

Detail
1546
437
1m
3m

N 90" E

time = 14.99 seconds

x(m)
time = 19.99 seconds

Figure 10. Case example: cone shaped island (2/2).

The Figure 12 shows the hydrodynamic
variables obtained with the propagation module
for a point located near the zone of rupture.
It should be noted that the magnitude of the
variable P, which measures the "mass transport"
in the “x” direction, is one order of magnitude
greater than the magnitude Q that measures
transport in the perpendicular direction, as
expected. The mean solid flow rate along the
sea state can be seen in Figure 13. Associated
with this flow rate, the variation of the bottom
along the 3 hours of sea state is shown in
Figure 14. to be appreciated, there is a clear
predominance of solid transport in a first zone
of rupture, after which, the loss of wave energy
decreases the intensity of this transport.



Thus, the modified bathymetry by the state of
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the sea is represented in the Figure 15.
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11. Initial bathymetry in the study area.
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Figure 12. Time series of the free surface 7(t and

of the variables P and Q for a point located near the

rupture zone.
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13. Average solid flow during sea state
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in

DISCUSSION

The models that solve the phase, such as tho-
se based on the MSE, have an advantage over
the spectral models, as there is no loss of infor-
mation from the phase, because the height of
the sheet is obtained in a deterministic way at
every moment and in every point.
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Figure 14. Variation in the bathymetry during the sea
state. Negative values in the variation of the seabed
indicate erosion, positive values show deposition of
sediments.
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Figure 15. Final bathymetry after the propagation
and the computation of sediment transport.

In spite of this, the implementation of this type
of models is limited due to the high computational
cost required, taking into account that the mesh
sizes must be of the order of L / 50 or L / 20;
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where L is the wavelength characteristic of the
swell; and the passage of time for the temporary
integration one or two orders of magnitude
lower than the characteristic period of the swell
(Universidad de la Corufia, 2013).

So that, based on the hyperbolic form of the
smooth slope equation, the model developed
in the present investigation, implements the
fourth order Runge-Kutta scheme (RK4) as a
temporary integration method, allowing greater
values of the temporary step, and therefore,
a higher computation speed, with which the
aforementioned drawback is partially solved.

The elliptical form of the MSE equation
implies the imposition of boundary conditions
on all domain boundaries in the models that use
it (eg MSP-IH Cantabria and MIKE 21 EMS-DHI),
generating problems regarding the conditions of
absorption for oblique incidence of the waves
due to the appearance of unwanted reflections,
from the numerical modeling. In addition, for
propagation on very large surfaces, the finite
element method requires the use of large
meshes, which translatesinto a high computation
time (Losada, I.]., Medina, Losada, M.A & Vidal,
1995). Other models have developed a parabolic
extension of this equation, which allows to apply
boundary conditions (reflective or open) only in
the swell incidence contours, assuming that the
wave propagates in a predominant direction (eg
OLUCA-IH Cantabria, MIKE 21 PMS-DHI), which
is a disadvantage compared to the hyperbolic
models, since, in the case of waves changing
direction, the calculation mesh should also be
modified to align with it. Compared with elliptical
models, hyperbolic models offer the advantage of
the reduction in calculation time, particularly in
two-dimensional domains and, in addition, they
are capable of incorporating arbitrary intensity
contours for reflection, refraction and diffraction
mechanisms (Lee et al., 1998). In this sense,
the absorbent and reflective contour conditions
applied in this investigation, proved not to
generate instabilities and function correctly, as
can be observed in the different tests carried
out, where for the absorbing conditions, the
model responds satisfactorily to the exercises in
which the Airy solution was applied and the test

with the bathymetry of Briggs et al., (1995) for
reflective conditions, all of them with efficient
computation times.

Taking into account that the model developed
in this study was carried out within the framework
of the LIZC project, a sediment transport module
was implemented as a complementary part,
which is responsible for solving the transport
of sediments and the morphological evolution
of the coastal bathymetry, from the results of
the hydrodynamic module. Since the transport
of sediments depends on the circulatory system
in the surf zone, which in turn is induced by
waves (Losada et al., 1995), it is necessary
to consider that the hydrodynamic equations
used here solve a linear model, and for this
it was necessary to adapt the data in such a
way that the transformation of a completely
linear swell (without transport of sediments)
into a non-linear swell was made. Numerous
authors have developed modifications and
extensions to the equation of the mild slope
using the theories of Airy, Stokes, and in the
expression of Hedges among others, with the
purpose of solving the wave-current interaction.
The equation developed in this research makes
use of the Stokes theory to modify the speed
under the crests and the troughs of a wave, by
assimilating a non-linear wave with non-zero
sediment transport, which demonstrated the
expected performance as can be seen in the
Figure 6.

In this order of ideas, the sediment transport
module, executed once the hydrodynamic
module results were obtained for the exercise
in Galerazamba, showed the good performance
of the formulations applied (Figures 12 - 14),
beginning with the proposal by Van Rijn and
Kroon (1992), for solid transport. This proposal
is one of the most used at present in coastal
environments to provide a low dispersion with
respect to measurements (Cinat, 2012), and
whose effectiveness was proven by Bayram,
Larson and Hanson (2007), for tidal currents
and in the surf zone. Similarly, the Exner
equation, used to describe the evolution of the
background after simulating a sea state, also
proved fulfil its objective.
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CONCLUSIONS

A model based on the "mild-slope" equations
was developed with the capacity to feed the
LIZC model, showing a high computational
performance, for which an internal generation
function was configured and validated in the
cases 1D and 2D; verifying that the created
waves possess the required amplitudes, and the
incidence angle exactly matches that imposed.
In addition, it was verified that the reflective and
absorbent conditions applied did not generate
instabilities or fictitious waves. Regarding the
case applied in the Galerazamba area, the model
presented a coherent response with respect to
the formulations applied for the transport of
sediments and the modification of the seabed.
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