Uso de isótopos estables de carbono y nitrógeno para estudios de ecología acuática

Autores/as

  • Pedro Caraballo Universidad de Sucre

DOI:

https://doi.org/10.26640/22159045.210

Palabras clave:

Isótopos estables, ecología acuática, redes tróficas, microbial loop

Resumen

El flujo de carbono hasta los niveles superiores en las redes tróficas acuáticas, se presenta de dos formas básicas: una corta, basada en la producción fitoplanctónica, conocida como planctónica, y otra más larga, que incluye además las bacterias, protozoarios y el proceso denominado microbial loop (cíclico), llamada red trófica microbiana. Incluir esta otra cadena en los estudios de redes tróficas, complementa la visión general de las redes tróficas acuáticas, hoy limitada en ese aspecto. En ese sentido, el análisis de la abundancia natural de los isótopos estables de carbono y nitrógeno, es una técnica que permite definir el papel de los grupos tróficos que integran las redes tróficas acuáticas. La proporción de isótopos de carbono define la fuente autótrofa y la proporción de isótopos de nitrógeno permite inferir, basados en el proceso de fraccionamiento trófico, el nivel trófico de los organismos estudiados.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Pedro Caraballo, Universidad de Sucre

    Universidad de Sucre, Facultad de Ciencias Agropecuarias, Sincelejo, Colombia.

Referencias

[1] Porter KG. 1996. Integrating the microbial loop and the classic food chain into a realistic planktonic food web. In: Food Webs: integrations of patterns and dynamics. Edited by G.A. Polis and K.O. Winemiller. Chapman & Hall. USA.

[2] Post DM, Pace MI, Hairston jr. NJ. 2000. Ecosystem Size Determines Food-Chain Length in Lakes. Nature, Vol. 405.

[3] Lyndeman RL. 1942. The trophic-dynamic aspect of ecology. Ecology 23:399-418.

[4] Pomeroy LR. 1974. The ocean food web, a changing paradigm. BioScience 24: 499-504.

[5] Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Marine ecology progress series. Oldendorf. Vol. 10, No. 3, pp. 257-263.

[6] Kerner M, Hohenberg H, Ertl S, Reckermannk M, Spitzy A. 2003. Self-organization of dissolved organic matter to micelle-like microparticles in river water. Nature, Vol 422: 150-154.

[7] Hobbie J.E. 1988. A comparison of the ecology of planktonic bacteria in fresh and salt water. Limnol. Oceanogr. 33: 750-764.

[8] Ventela A, Wiackowski K, Moilanen M, Saarikari V, Vuorio K, Sarvala J. 2002. The effect of small zooplankton on the microbial loop and edible algae during a cyanobacterial bloom. Freshwater Biology 47, 1807–1819.

[9] Work K, Havens K, Sharfstein B, East T. 2005. How important is bacterial carbon to planktonic grazers in a turbid, subtropical lake?. Journal of Plankton Research 27(4): 357-372.

10] Woese CR, Fox GE. 1977. Phylogenetic structure of the Prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America 74:5,088–5,098.

[11] Pomeroy LR, Williams PJ, Azam F, Hobbie JE. 2007. Te Microbial Loop. Oceanography, 20(2): 29-33.

[12] Tranvik L.J. 1992. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229: 107–114.

[13] Jansson M, Bergström A, Blomqvist P, Drakare S. 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81(11): 3250-3255.

[14] Klug J.L. 2005. Bacterial response to dissolved organic matter affects resource availability. Canadian Journal of Fisheries and Aquatic Sciences; 62, 2; ProQuest Biology Journals. p. 472-481.

[15] Grossart H.P, Kiorboe T, Tang K, Ploug H. 2003. Bacterial Colonization of Particles: Growth and Interactions. Applied and Environmental Microbiology, v.69, n.6, p. 3500-3509.

[16] Sieburth JMCN, Smetacek V, Lenz J. 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions Limnology and Oceanography, 23, 1256–1263.

[17] Fenchel T. 1988. Marine plankton food chains. Ann. Rev. Ecol. .syst. 19: 19-38.

[18] Winemiller KO. 2004. Floodplain River Food Webs: Generalizations and Implications for Fisheries Management. Food and Agriculture Organization of the United Nations (FAO), Regional Office for Asia and the Pacific; Mekong River Commission (MRC), Fisheries Programme (FP) Editor: Robin L. Welcomme; T. Petr. 285-310.

[19] Araujo-Lima C.A.R.M, Forsberg B.R, Victoria R, Martinelli L.A. 1986. Energy sources for detritivorous fishes in the Amazon. Science. 234: 1256-1 258.

[20] Forsberg B, Araujo-lima C.A.R.M, Martinellri L.A, Victoria R, Bonassi J.A. 1993. Autotrophic carbon sources for fish of the central Amazon. Ecology, 74(3), pp. 643-652.

[21] Leite RG, Araujo-Lima CARM, Victoria RL, Martinelli LA. 2002. Stable isotope analysis of energy sources for larvae of eight fish species from the Amazon floodplain. Ecology of Freshwater Fish: 11: 56–63. Blackwell Munksgaard.

[22] Waichman AV. 1996. Autotrophic carbon sources for heterotrophic bacterioplankton in a flood plain lake. Hydrobiologia 341: 27–36.

[23] Fernandez J. 1993. Fontes autotróficas de energía em juvenis de jaraqui Semaprochilodus insignis (Schomburgk, 1841) e Curimatá, Prochilodus nigricans (Agassiz,1829) (Pisces:Prochilodontidae) na Amazônia Central. MSc. Thesis, Instituto Nacional de Pesquisas da Amazônia / Universidade Federal do Amazonas. Manaus, 58 pp.

[24] Rai H, Hill G. 1984. Primary production in the Amazônian aquatic ecosystem. In: H. Sioli (ed), The Amazon. Limnology and landscape ecology of a mighthy river and its basin. Dr. W. Junk Publishers. Dordrecht.

[25] Pelz O, Cifuentes L, Hammer B, Kelley Ch, Coffin R. 1998. Tracing the assimilation of organic compounds using N13C analysis of unique amino acids in the bacterial peptidoglycan cell wall. FEMS Microbiology Ecology 25: 229-240.

[26] Junk W.J, Bayley P.B, Sparks R.E. 1989. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci., 106: 110-127.

[27] De Ruiter P, Wolters V, Moore J, Winemiller K. 2005. Food Web Ecology: Playing Jenga and Beyond. Science, Vol 309: 68-70.

[28] Caraballo P, Hardy E. 1995. Fluctuación diaria de las Poblaciones de Daphnia gessneri HERBSTy Ceriodaphnia cornutaSARS (CRUSTACEA-CLADOCERA) en el Lago Calado (Amazonas, Brasil). Boletín Científico INPA, No. 3: 79-96. Colombia.

[29] Melack JM, Forsberg BR. 2001. Biogeochemistry of Amazon floodplain lakes and associated wetalands. In: McClain, M.E.; Victoria, R.L. and J.E. Richey (eds.) The biogeochemistry of the Amazon Basin. Oxford University Press, Oxford 235-274 pp.

[30] Bayley P, Petrere M. Jr. 1989. Amazon Fisheries: assessment methods, current status and managment options. Can. Spec. Publ. Fish. Aquat. Sci. 106: 385-398.

[31] Oliveira AC. 2003. Isótopos estáveis de C e N como indicadores qualitativo e quantitativo da dieta do tambaqui (Colossoma macropomum). Tese doutorado. Universidade de São Paulo. Brasil.

[32] Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–18.

[33] Dawson TE, Brooks PD. 2001. Fundamentals of stable isotope chemistry and measurement. In: Unkovich M, Pate J, McNeill A, Gibbs DJ (Eds.) Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems. Kluwer. Dordrecht, Holland. pp. 1-18.

[34] Martinelli LA, Victoria RL, Matsui E, Forsberg BR, Mozeto AA. 1988. Utilização das variações naturais de ä13C no estudo de cadeias alimentares em ambientes aquáticos: princípios e perspectivas. 1988. Acta Limnol. Brasil. Vol 11: 859 – 882.186.

[35] Benstead J, March J, Fry B, Ewel K, Pringle C. 2005. Testing IsoSource: stable isotope analysis of a tropical fishery with diverse organic matter sources. Ecology:Vol. 87, No. 2, pp. 326–333.

[36] Phillips D, Seth A, Newsome D, Gregg J. 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia 144: 520–527.

[37] De Niro MJ, Epstein S. 1981. Influence of Diet on the Distribution of Nitrogen Isotopes in Animals. Geochimica Et Cosmochimica Acta, 45(3): 341-351.

[38] Vander Zanden MJ, Rasmussen JB. 2001. Variation in d15N and d13C trophic fractionation: Implications for aquatic food webs studies. Limnol. Oceanogr., 46(8): 2061–2066.

[39] Jomori R.K, Ducatti C, Carneiro D.J, Portella M.C. 2008. Stable carbon (d13C) and nitrogen (d15N) isotopes natural indicators of live and dry food in Piaractus mesopotamicus (Holmberg, 1887) larval tissue. Aquaculture Research, v. 39, p. 370-381.

[40] Caut S, Angulo E, Courchamp F. 2008. Discrimination Factors (d15N and d13C) in an omnivorous consumer: effect of diet isotopic ratio. Functional Ecology, 22:255-263.

[41] Jardine T.D, McGeachy S.A, Paton C.M, Savoie M, Cunjak R.A.2003. Stable isotopes in aquatic systems: Sample preparation, analysis, and interpretation. Can. Manuscr. Rep. Fish. Aquat. Sci. No. 2656: 39 p.

[42] Boschker HTS, Middelburg JJ. 2002. Stable isotopes and biomarkers in microbial ecology FEMS Microbiology Ecology 40: 85-95.

[43] Coffin RB, Fry B, Peterson BJ, Wright RT. 1989. Carbon isotope composition of estuarine bacteria. Limnol. Oceanogr. 34(7): 1305-1310.

[44] Hamilton SK, Lewis WM, Sippel SJ. 1992 Energy-Sources for Aquatic Animals in the Orinoco River Floodplain - Evidence from Stable Isotopes. Oecologia, 89(3): 324-330.

[45] Calheiros DF. 2003. Influência do pulso de inundação na composição isotópica (ä13C e ä15N) das fontes primárias de energia na planície de inundação do rio Paraguai (Pantanal – MS). Tese de Doutorado. USP- Centro de Energia Nuclear na Agricultura, 164p.

[46] Hamilton SK, Sippel SJ, Bunn SE. 2005. Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica. Limnol. Oceanogr.: Methods 3, 149–157.

[47] Marty J, Planas D.2008. Comparison of methods to determine algal ä13C in freshwater. Limnol. Oceanogr.: Methods 6, 51–63.Caraballo: Uso de isótopos estables para estudios de ecología acuática

[48] Yoshioka T, Wada E, Hayashi H. 1994. Astable isotope study on seasonal food web dynamic in an eutrophic lake. Ecology 75(3): 835-846.

[49] Grey J, Kelly A, Jones R. 2004. High intraspecific variability in carbon and nitrogen stable isotope ratios of lake chironomid larvae. Limnol. Oceanogr., 49(1), 2004, 239–244.

[50] Wetzel, R.G. 2001. Limnology, lake and river ecosystems. Third Edition. Academic Press.

[51] Wantzen KM, Machado FA, Voss M, Boriss H, Junk WJ. 2002. Flood pulse-induced isotopic changes in fish of the Pantanal wetland, Brazil. Aquatic Sciences 64: 239–251.

[52] Guerrero R, Berlanga M. 2004. La Ecología Microbiana se hace mayor de edad. Boletín informativo de la Sociedad Española de Microbiología, No. 34.187

Descargas

Publicado

2009-12-05

Número

Sección

Artículos de investigación científica y tecnológica

Cómo citar

Uso de isótopos estables de carbono y nitrógeno para estudios de ecología acuática. (2009). Boletín Científico CIOH, 27, 176-187. https://doi.org/10.26640/22159045.210

Artículos similares

21-30 de 93

También puede Iniciar una búsqueda de similitud avanzada para este artículo.