Coastal phytoplankton in Cabo Marzo and Punta Cruces, northeastern margin of Colombian Pacific Ocean
DOI:
https://doi.org/10.26640/22159045.220Keywords:
Oceanography, coastal waters, tropical environment, phytoplankton, diatomsAbstract
The community structure (abundance, richness, diversity, equitability and dominance) and the relationship with abiotic factors (temperature, salinity and transparency) of the coastal phytoplankton near Cabo Marzo and Punta Cruces, northeastern margin of Colombian Pacific Ocean, were investigated. Both sites have been identified as potential places to implement a marine-costal protected area of special management. 86 species were identified in Cabo Marzo (51 were diatoms, 30 dinoflagellates, 3 cyanophytes and 2 silicoflagellates) and 112 species were identified in Punta Cruces (62 were diatoms, 42 dinoflagellates, 5 cyanophytes and 3 silicoflagellates), being the dissimilarity between localities of 41.55 % (Bray-Curtis dissimilarity index). No significant difference in density were detected (t16; 0.05 = 1.80; p = 0.091). Chaetaceros laevis was de dominant taxa in Cabo Marzo, while Ceratium fusus and C. furca were the dominant species in Punta Cruces. A significant correlation between phytoplankton community and salinity in the study zone was detected (ρs = 0.41). Although the results of this investigation have a limited temporal and geographical applicability, these provide relevant and novel information about the coastal phytoplankton community from one of the zones fewer explored in the Pacific coast of Colombia.Downloads
References
[2] Fiedler, P. C. y L. D. Talley. 2006. Hydrography of the eastern tropical Pacific: a review. Progress. Oceanogr., 69: 143-160.
[3] Chavez, F.P. y R. T. Barber. 1987. An estimate of new production in the equatorial Pacific. Deep-Sea Research., 34, 1229–1243.
[4] Chavez, F.P. 1995. A comparison of ship and satellite chlorophyll from California and Peru. J. Geophys. Res., 100: 24855–24862.
[5] Chavez, F.P., K. R. Buck, S. K. Service, J. Newton y R. T. Barber. 1996. Phytoplankton variability in the central and eastern tropical Pacific. Deep-Sea Res II., 43: 835–870.
[6] Fiedler, P.C., 2002. The annual cycle and biological effects of the Costa Rica Dome. Deep-Sea Res. I., 49: 321–338.
[7] Pennington, J.T., K.L. Mahoney, V. S. Kuwahara, D. D. Kol-ber, R. Calienes, F. P. Chavez, F.P., 2006. Primary production in the eastern tropical Pacific: a review. Progr. Oceanogr., 69: 285–317.
[8] Restrepo, J. D. y B. Kjerfve. 2000. Water and sediment load from the western slopes of the Colombia Andes with fo-cus on Río San Juan. J. Geol. 108: 17-33.
[9] Poveda, G. y O. J. Mesa. 2000. On the existente of Lloró (the rainiest locality on the Herat): enhanced Ocean-Land-Atmosphere interacction by a low-level jet. Geophy. Res. Letters. 27 (11): 1675-1678.
[10] Mann, K, H. 2000. Ecology of coastal waters: with implication for management. 2nd ed. Blackwell Sciences. USA. 406 pp.
[11] Jones, A. B., M. J. O’Donohue, J. Udy, y W. C. Denison. 2001. Assessing ecological impacts of shrimp and sewage effluent: biological indicators with standard water quality analyses. Est. Coast. Shelf Sci., 52: 91–109.
[12] Roelke, D., D. Augustine, y Y. Buyukates. 2003. Fundamental predictability in multispecies competition: the influence of large disturbance. Amer. Nat., 162: 615–623.
[13] Tilman, D., S. S. Kilham, y P. Kilham. 1982. Phytoplankton community ecology: The role of limiting nutrients. Annu. Rev. Ecol. Syst., 13: 349–372.
[14] Underwood, G.J.C., J. Phillips y K. Saunders. 1998. Distribution of estuarine benthic diatom species along salinity and nutrient gradients. Eur. J. Phycol., 33: 173–183.
[15] Huisman, J., P. van Oostveen, y F. J. Weissing. 2001. Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms. Limnol. Oceanogr., 44: 1781–1787.
[16] Irigoien, X., J. Huisman, y R. P. Harris. 2004. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature., 429: 863–867.
[17] Alvarez-Góngora, C. y J. A. Herrera-Silveira. 2006. Variations of phytoplankton community structure related to water quality trends in a tropical karstic coastal zone. Mar. Pollution Bull., 52: 48–60.
[18] Spatharis, S., D. Mouillot, D. B. Danielidis, M. Karydis, T. Do Chi y G. Tsirtsis. 2008. Influence of terrestrial runoff on phytoplankton species richness-biomass relationships: A double stress hypothesis. J. Exp. Mar. Biol. Ecol., 362: 55–62.
[19] Parsons, T. R., M. Takahashi y B. Margrave. 1984. Biological Oceanographic processes. 3th ed. Pergamon Press, UK. 330 pp.
[20] Platt, T., P. Jauhary y S. Sathyebdranath. 1992. The importance and measurement of new production. En: P. Falkowski y A. Woodhead (eds.). Primary productivity and biogeochemical cycles in the sea. Environ. Sci. Res., 43: 273-284.
[21] Mann, K. H. y J. R. N. Lazier. 1996. Dynamics of marine ecosystems: biological-physical interactions in the oceans, Blackwell Science, Boston, 394 pp.
[22] Beisner, B. E. 2001. Plankton community structure in fluctuating environments and the role of productivity. OI-KOS., 95:496-510.
[23] Troccoli, G.L., J. A. Herrera-Silveira, y F. A. Comín. 2004. Structural variations of phytoplankton in the coastal seas of Yucatan, Mexico. Hydrobiologia., 519: 85–102.
[24] Herrera, L. y R. Escribano. 2006. Factors structuring the phytoplankton community in the upwelling site off El Loa river in the northern Chile. J. Mar. Syst., 61: 13-38.
[25] Peña, V. y G. Pinilla. 2006. Composición, distribución y abundancia de la comunidad fitoplanctónica de la Ensenada de Utría, Pacífico colombiano. Rev. Biol. Mar. Ocenogr., 37: 67-81.
[26] Vargas-Faucheaux, C., E. Cajiao, R. Steer, P. Monsalve y R. Combariza. 1969. Estudio preliminar descriptivo de algunas variables oceanográficas del Pacífico colombiano (Programa ACENTO 1965-1966). Departamento Oceanográfico Escuela Naval Almirante Padilla, Cartagena, Colombia, 51 pp.
[27] Corchuelo, C. y G, Moreno. 1983. Contribución al Conocimiento del Fitoplancton y algunos tintínidos del Pacífico Colombiano. Tesis de grado. Universidad Jorge Tadeo Lozano. Bogotá. 84 pp.
[28] Castillo F. 1984. Fitoplancton del Pacífico colombiano como indicador de masas de agua (ERFEN IV). Biología Pesquera 13: 67-70.
[29] Castillo, F. y Z. Vizcaino. 1992. Los indicadores biológicos del fitoplancton y su relación con el fenómeno de El Niño 1991-92 en el Pacífico colombiano. Boletín Científico CIOH., 12: 13-22.
[30] Castillo, F. y Z. Vizcaíno. 1993. Observación del Fitoplancton del Pacífico Colombiano Durante 1991-1992 en Condiciones El Niño. Bull. Inst. Frances de Études andines., 22: 179-190.
[31] Ramírez, D. G, A. Giraldo y J. Tovar. 2006. Producción primaria, biomasa y composición taxonómica del fitoplancton costero y oceánico en el Pacífico colombiano (septiembre-octubre 2004) Invest. Mar., Valparaíso, 34: 211-216.
[32] Calderón, E. 1979. Contribución al estudio del fitoplancton nerítico de Tumaco y sus alrededores. Tesis de Biología Marina. Universidad Jorge Tadeo Lozano, Bogotá, 88 pp.
[33] Collazos, A. 1992. Contribución al estudio del fitoplancton en la ensenada de Tumaco (Contribution to the study of phytoplankton in the Tumaco swamp) (Colombian Pacific). Thesis on Biology with a minor in Marine Biology. Universidad del Valle, Cali, 80 pp.
[34] Pineda, F. 1990. Contribución al estudio del fitoplancton en la bahía de Buenaventura. (Contribution to the study of phytoplankton in Bahia de Buenaventura) (Colombian Pacific). Thesis on Biology with a minor in Marine Biology. Universidad del Valle, Cali, 62 pp.
[35] Mendoza, A. E. 1996. Fitoplancton del área comprendida entre La Caleta Caracas y La Muerte (Phytoplankton of the are comprised between La Caleta Caracas and La Muerte) (Bahía de Málaga) Colombian Pacific. Thesis on Biology with a minor in Marine Biology. Universidad del Valle, Cali. 47 pp.
[36] Zapata, F.A. y B. Vargas-Ángel. 2003. Corals and coral reefs of the Pacific coast of Colombia. En: J. Cortes (ed.). Coral reefs of Latin America. Elsevier Science, Amsterdam, Else-vier Science, pp. 419-447.
[37] Vieira C. 1994. Estructura y estado actual del bosque de mangle de Utría (Structure and state of the art of the Utria mangrove forest). FES, Fundación Natura. Bogotá, Colombia. 58 pp.
[38] Prahl, H. von., J. R. Cantera y R. Contreras. 1990. Manglares y hombres del pacífico colombiano. (Mangrove forest and men of the Colombian Pacific) Fondo FEN- Colciencias. Bogotá, 193 pp.
[39] Tobón, A., E. A. Rubio y A. Giraldo. 2008. Composición y análisis taxonómico de la íctiofauna del golfo de Tribugá, Pacífico norte de Colombia (Composition and taxonomical analysis of ichthyic fauna in the Gulf of Tribuga, North Colombian Pacific). Lat. Am. J. Aquat. Res., 36: 93-104.
[40] . Hernández, J., A. Hurtado, R. Ortiz y T. Walschburger. 1992. Centros de Endemismos en Colombia. (Endemic Centers in Colombia) In: La Diversidad Biológica de Iberoamérica. (G. Halffter, compilador). Acta Zool. Mexicana, volumen especial, pp.175-190.
[41] Mittermeier, R. A., N. Myers, P. Robles-Gil y C. G. Mitter-meier. 2000. Hotspots: Earth's biologically richest and most endangered terrestrial Ecoregions. Conservation International, USA. 432 pp.
[42] Jiménez, R. 1983. Diatomeas y Silicoflagelados del fito-plancton del Golfo de Guayaquil (Diatomeas y Silicoflage-lates of the Golfo de Guayaquil phytoplankton). Acta Oceanográfica del Pacífico (INOCAR), Ecuador, 2(2): 193-282.
[43] Pesantes, F. 1983. Dinoflagelados del Fitoplancton del Golfo de Guayaquil (Dinoflagelates of the Golfo de Gua-yaquil phytoplankton). Acta Oceanográfica del Pacífico (INOCAR), Ecuador, 2(2):283-399.
[44] Tomas, C. R. 1993. Marine Phytoplankton. A Guide to naked flagellates and coccolitophorids. San Diego, USA. Academic Press, 263 pp.
[45] . Tomas, C. R. 1997. Identifying Marine Phytoplankton. San Diego, USA: Academic Press, 858 pp.
[46] Rivera-Tanenbaum, D. 2006. Dinoflagelados e Tintinídeos da regiao central da Zona Econômica Exclusiva brasileira. Guia de identificacao. Museo Nacional, Rio de Janeiro. 287 pp.
[47] Chao, A., W.-H. Hwang, Y.-C. Chen y C.-Y. Kuo. 2000. Estimating the number of shared species in two communities. Stat. Sinica., 10: 227-246.
[48] Chazdon, R. L., R. K. Colwell, J. S. Denslow, y M. R. Guariguata. 1998. Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In Dallmeier F., Comiskey J. A.(Eds). Forest biodiversity research, monitoring and modeling: Conceptual background and Old World case studies. Parthenon Publishing, Paris, pp. 285-309.
[49] Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11: 265-270.
[50] Chao, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics. 43: 783-791.
[51] Smith, E.P. y van Belle, G. 1984. Nonparametric estimation of species richness. Biometrics 40, 119-129.
[52] Burnham, K.P. y W.S. Overton. 1978. Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika. 65, 623-633.
[53] Burnham, K.P. y W.S. Overton. 1979. Robust estimation of population size when capture probabilities vary among animals. Ecology., 60, 927-936.
[54] Heltshe, J. y N.E. Forrester. 1983. Estimating species richness using the jackknife procedure. Biometrics., 39: 1-11.
[55] Colwell, R. K. 2005. Estimates: Statistical estimation of species richness and shared species from samples. Version 8.0. User's Guide and application published at: http://purl.oclc.org/estimates.
[56] Clarke, K. R. y R. M. Warwick. 2001. Change in marine communities: an approach to statistical analysis and interpre-tation. Primer-E , Plymouth, UK. 172 pp.
[57] Digby, P.G.N. y R. A. Kempton. 1987. Multivariate Analysis of Ecological Communities. Chapman and Hall, London. 216 pp.
[58] Shepard, R. N. 1962a. The Analysis of Proximities: Multidimensional Scaling with an Unknown Distance Function. Part I. Psychometrika., 27: 125-139.
[59] Shepard, R. N. 1962b. The Analysis of Proximities: Multidimensional Scaling with an Unknown Distance Function. Part II. Psychometrika., 27: 219-246.
[60] Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika., 29:1-27.
[61] Clarke, K. R., P. J. Somerfield y R. N. Gorley. 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol., 366: 56–69.
62] Haury, L. R., J. A. McGowan y P. H. Wiebe. 1978. Patterns and processes in the time-space scales of plankton distri-butions. In: Steele, J.H. (Ed.), Spatial Pattern in Planktonic Communities. Lenum Press, New York, pp 277–327.
[63] Denman, K.L. y T.M. Powell, 1984. Effects of physical processes on planktonic ecosystems in the coastal ocean. Oceanogr. Mar. Biol. Ann. Rev., 22: 125-168.
[64] Mackas, D.L., K.L. Denman y M.R. Abbot. 1985. Plankton patchiness: biology in the physical vernacular. Bull. Mar. Sci., 37: 652-674.
[65] Pannard, A., P. Claquin, C. Klein, B. Le Roy y B. Véron. 2008. Short-term variability of the phytoplankton community in coastal ecosystem in response to physical and chemical conditions changes, Est. Coast. Shelf Sci., 80: 212-224.
[66] Cortes, A. 1993. Los Suelos. En: Leiva, P. (ed). Colombia Pacífico. Fondo para la protección del medio ambiente, FEN. Bogota, Colombia, pp 149 –155.
[67] Eslava, J. 1993. Climatología. En. Leiva, P. (ed). Colombia Pacífico. Fondo para la protección del medio ambiente, FEN. Bogota, Colombia, pp 137-147.
[68] Cantera, J. 1993. Oceanografía. En: Leyva, P (ed). Colombia pacífico. Tomo 1. Fondo para la protección del medio ambiente, FEN. Bogotá , Colombia, pp. 13-23.
[69] Monbet, Y. 1992. Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal estuaries. Estuaries. 15: 563-571.
[70] Lucas, L.V., Koseff, J.R., Monismith, S.G., Cloern, J.E., Thomp-son, J.K., 1999. Processes governing phytoplankton blooms in estuaries. II: The role of horizontal transport. Mar. Ecol. Progr. Ser., 187: 17-30.
[71] Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Progr. Ser., 210: 223-253.
[72] Cushing, D.H. 1989. A difference in structure between ecosystems in strongly stratifiedwaters and in those that are only weakly stratified. J. Plankton Res., 11: 1–13.
[73] Hutchings, L., G. Pitcher, T. Probyn y G. Bailey. 1995. The chemical and biological consequences of coastal upwe-lling. In: Summerhayes, C.P., K.C. Emers, M. V. Angel, R. L. Smith y B. Zeitzchel. (Eds.), Upwelling in the Oceans: Modern Processes and Ancient Records. John Wiley and Sons, pp 65–81.
[74] Brink, K., F. Abrante, P. Bernal, M. Estrada, L. Hutchings, R., Jahnke, P. Müller, R. Smith. 1995. Group report: how do coastal upwelling systems operate as integrated physical, chemical, and biological systems and influence the geological record?. The role of physical processes in defining the spatial structures of biological and chemical variables. In: Summerhayes, C., K. Emeis, M. Angel, R. Smith y B. Zeitzschel. (Eds.). Upwelling in the Oceans: Modern Processes and Ancient Records. John Wiley & Sons, pp 103–125.
[75] Chisholm, S.W. 1992. Phytoplankton size. In: Falkowski, P.G., Woodhead, A.D. (Eds.), Primary Productivity and Bio-geochemical Cycles in the Sea. Plenum Press, New York, pp. 213–236.
[76] Agawin, N.S.R., C. M. Duarte y S. Agustí. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr., 45: 591–600.
[77] Tundisi, J.G. 1971. Size distribution of the phytoplankton and its ecological significance in tropical waters. In: Cost-low, J.D. (Ed.), Fertility of the Sea. Gordon & Breach, New York, pp 603–612.
[78] Wilkerson, F.P., R. C. Dugdale,R. M. Kudela y F. P. Chavez. 2000. Biomass and productivity in Monterey Bay, CA: contribution of the large phytoplankton. Deep-Sea Research II., 47: 1003–1023.
[79] Marañón, E., P. M. Holligan, R. Barciela, N. González, B. Mouriño, M.J. Pazó y M. Varela. 2001. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Progr. Ser., 216: 43–56.
[80] Arin, L., X. A. G. Morán y M. Estrada. 2002. Phytoplankton size distribution and growth rates in the Alboran Sea (SW Mediterranean): short-term variability related to mesoscale hydrodynamics. J. Plankton Res. 24: 1019–1033.
[81] Mullin, M. 1993. Webs y Scales: physical and ecological processes in marine fish recruitment. Washington Sea Grant Program. University of Washington Press, Seattle. 135 pp.
[82] Cunningham, A., D. Mckee, S. Craig, G. Tarran y C. Widdi-combe. 2003. Fine-scale variability in phytoplankton community structure and inherent optical properties measured from an autonomous underwater vehicle. J. Mar. Syst., 43: 51–59.
[83] Bissett, W.P., R. A. Arnone, C. O. Davis,T. D. Dickey, D. Dye, D. D. R. Kohler, y R. W. Gould Jr. 2004. From meters to kilometers: a look at ocean-color scales of variability, spatial coherence, and the need for fine-scale remote sensing in coastal ocean optics. Oceanography., 17:, 32–43.
[84] Holligan, P.M. y W. A. Reiners. 1992. Predicting the responses of the coastal zone to global change. Adv. Ecol. Res., 22: 211–255.
[85] Giraldo, A. y B. Valencia (Eds). 2008. Chocó paraíso por naturaleza: Punta Cruces y Cabo Marzo. Programa Editorial Universidad del Valle. Cali, Colombia, 93 pp.
[86] Araujo, M. B., C. J. Humphries, P. J. Densham, R. Lampinen, W. J. M. Hagemeijer, A. J. Mitchell-Jones y J. P. Gase. 2001. Would environmental diversity be a good surrogate for species diversity?. Ecography, 24: 103–110.
[87] Skova, H., J. Durinckb, M. F. Leopoldc y M. L. Taskerd. 2007. A quantitative method for evaluating the importance of marine areas for conservation of birds. Biol. Conserv., 136: 362-371.
[88] Winberg, P. C., T. P. Lynch, A. Murray, A. R. Jones y A. R. Da-vis. 2007. The importance of spatial scale for the conservation of tidal flat macrobenthos: an example from New South Wales, Australia. Biol. Conserv., 134: 310-320.
Downloads
Published
Issue
Section
License
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.