Impactos de la Oscilación del Sur de El Niño en la variabilidad hidroclimatológica de una cuenca andina tropical a partir de conjuntos de datos finos espacializados

Authors

DOI:

https://doi.org/10.26640/22159045.2025.654

Keywords:

ENSO, Water security, Natural hazards, Precipitation, Gridded datasets

Abstract

This study explored the influence of the El Niño-Southern Oscillation (ENSO) on hydro-climatological variability within a tropical Andean basin, using the Peñol-Guatapé reservoir basin in Colombia as a case study. ENSO, as a primary global climate variability mode, manifests in warm (El Niño) and cold (La Niña) phases, impacting precipitation patterns across regions. Given its location, the Peñol-Guatapé basin is highly susceptible to these climatic fluctuations, which affect water availability, hydropower generation, and related natural hazards, such as landslides and droughts. Various high-resolution precipitation datasets were analyzed for their accuracy in representing precipitation patterns in the basin. The findings showed that CHIRPS (Climate Hazards Group Infrared Precipitation with Stations data) data best captures precipitation variability, aligning most closely with surface gauge measurements. The study also investigated ENSO-driven anomalies, revealing that El Niño events lead to substantial precipitation reductions, especially during the driest seasons, posing risks to water security and hydropower generation. Conversely, La Niña enhances precipitation, potentially increasing the risk of floods and landslides. Seasonal precipitation anomalies during ENSO phases were evaluated, confirming that the basin’s hydrological conditions are modulated by ENSO-driven precipitation patterns. These findings underscore the need for adaptive water management strategies to mitigate the impact of climate variability on water resources, infrastructure, and ecological stability in the Andean region. This research contributes to the understanding of ENSO’s localized impact, aiding in future water resource planning and risk management for the basin.

Downloads

Download data is not yet available.

Author Biographies

  • José A Posada-Marín, Institución Universitaria Digital de Antioquia

    Investigador Grupo de Investigación en Innovación Digital y Desarrollo Social INDDES, IU Digital de Antioquia, Medellín, Colombia.

  • Sharon A Sánchez-Muñoz, Institución Universitaria Digital de Antioquia

    Investigadora Grupo de Investigación en Innovación Digital y Desarrollo Social INDDES, IU Digital de Antioquia, Medellín, Colombia.

  • Melisa Toro-Martínez, Institución Universitaria Digital de Antioquia

    Investigadora Grupo de Investigación en Innovación Digital y Desarrollo Social INDDES, IU Digital de Antioquia, Medellín, Colombia.

References

Aguirre Ramírez, N. J., Palacio Baena, J., & Ramírez Restrepo, J. J. (2007). Características limnológicas del embalse el Peñol-Guatapé, Colombia. Revista Ingenierías Universidad de Medellín, 6(10), 53-66.

An, D., Eggeling, J., Zhang, L., He, H., Sapkota, A., Wang, Y. C., & Gao, C. (2023). Extreme precipitation patterns in the Asia–Pacific region and its correlation with El Niño-Southern Oscillation (ENSO). Scientific Reports, 13(1), 11068.

Arias, P. A., Bellouin, N., Coppola, E., Jones, R. G., Krinner, G., Marotzke, J., et al. (2021). Technical summary. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 33–144). Cambridge University Press.

Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., & Ziese, M. (2013). A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth System Science Data, 5(1), 71-99.

Bolaños, S., Salazar, J. F., Betancur, T., & Werner, M. (2021). GRACE reveals depletion of water storage in northwestern South America between ENSO extremes. Journal of Hydrology, 596, 125687.

Builes-Jaramillo, A., Yepes, J., & Salas, H. D. (2022). The Orinoco Low-Level Jet and its association with the hydroclimatology of Northern South America. Journal of Hydrometeorology, 23(2), 209-223.

Cai, W., Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F. F., ... & Guilyardi, E. (2015). Increased frequency of extreme La Niña events under greenhouse warming. Nature Climate Change, 5(2), 132-137.

Cai, W., McPhaden, M. J., Grimm, A. M., Rodrigues, R. R., Taschetto, A. S., Garreaud, R. D., ... & Vera, C. (2020). Climate impacts of the El Niño–southern oscillation on South America. Nature Reviews Earth & Environment, 1(4), 215-231.

Cai, W., Ng, B., Wang, G., Santoso, A., Wu, L., & Yang, K. (2022). Increased ENSO Sea surface temperature variability under four IPCC emission scenarios. Nature Climate Change, 12(3), 228-231.

Dai, A., & Wigley, T. M. L. (2000). Global patterns of ENSO‐induced precipitation. Geophysical Research Letters, 27(9), 1283-1286.

Duque Escobar, G. (2007). Amenazas naturales en los Andes de Colombia. Departamento de Matemáticas y Estadística.

Emberson, R., Kirschbaum, D., & Stanley, T. (2021). Global connections between El Nino and landslide impacts. Nature communications, 12(1), 2262

Emerton, R., Cloke, H. L., Stephens, E. M., Zsoter, E., Woolnough, S. J., & Pappenberger, F. (2017). Complex picture for likelihood of ENSO-driven flood hazard. Nature communications, 8(1), 14796.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., ... & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21.

Gao, J., Zhao, J., Hou, P., & Wang, H. (2022). Effects of ENSO on hydrological process and hydropower across the Lancang‐Mekong River Basin. River, 1(2), 172-188.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., ... & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.

Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J. R., & Mohren, G. M. (2001). El Niño effects on the dynamics of terrestrial ecosystems. Trends in Ecology & Evolution, 16(2), 89-94.

Jiménez‐Sánchez, G., Markowski, P. M., Jewtoukoff, V., Young, G. S., & Stensrud, D. J. (2019). The Orinoco low‐level jet: An investigation of its characteristics and evolution using the WRF model. Journal of Geophysical Research: Atmospheres, 124(20), 10696-10711.

Kim, K., Chowdhury, R., Pant, P., Yamashita, E., & Ghimire, J. (2021). Assessment of ENSO risks to support transportation resilience. Progress in disaster science, 12, 100196.

Lin, J., & Qian, T. (2019). A new picture of the global impacts of El Nino-Southern oscillation. Scientific reports, 9(1), 17543.

McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an integrating concept in earth science. science, 314(5806), 1740-1745.

Mishra, V. (2020). Long-term (1870–2018) drought reconstruction in context of surface water security in India. Journal of Hydrology, 580, 124228.

Montini, T. L., Jones, C., & Carvalho, L. M. (2019). The South American low‐level jet: A new climatology, variability, and changes. Journal of Geophysical Research: Atmospheres, 124(3), 1200-1218.

Muñoz, E., Poveda, G., Arbeláez, M. P., & Vélez, I. D. (2021). Spatiotemporal dynamics of dengue in Colombia in relation to the combined effects of local climate and ENSO. Acta Tropica, 224, 106136.

Muza, O. (2017). El Nino-Southern Oscillation influences on food security. Journal of Sustainable Development, 10(5), 268-279.

Ng, J. Y., Turner, S. W., & Galelli, S. (2017). Influence of El Niño Southern Oscillation on global hydropower production. Environmental Research Letters, 12(3), 034010.

Posada-Marín, J. A., Rendón, A. M., Salazar, J. F., Mejía, J. F., & Villegas, J. C. (2019). WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, 52, 3609-3629.

Posada‐Marín, J. A., Arias, P. A., Jaramillo, F., & Salazar, J. F. (2023). Global impacts of El Niño on terrestrial moisture recycling. Geophysical Research Letters, 50(10), e2023GL103147.

Poveda, G., Mesa, O. J., & Waylen, P. R. (2003). Nonlinear forecasting of river flows in Colombia based upon ENSO and its associated economic value for hydropower generation. Climate and water: transboundary challenges in the Americas, 351-371.

Poveda, G., Alvarez, D. M., & Rueda, O. A. (2011). Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Climate Dynamics, 36, 2233-2249.

Vicente-Serrano, S. M., Aguilar, E., Martínez, R., Martín-Hernández, N., Azorin-Molina, C., Sánchez-Lorenzo, A., ... & Nieto, R. (2017). The complex influence of ENSO on droughts in Ecuador. Climate Dynamics, 48, 405-427.

Sazib, N., Mladenova, L. E., & Bolten, J. D. (2020). Assessing the impact of ENSO on agriculture over Africa using earth observation data. Frontiers in Sustainable Food Systems, 4, 509914.

Sierra, J. P., Arias, P. A., Durán-Quesada, A. M., Tapias, K. A., Vieira, S. C., & Martínez, J. A. (2021). The Choco low‐level jet: past, present and future. Climate Dynamics, 56, 2667-2692.

Singh, J., Ashfaq, M., Skinner, C. B., Anderson, W. B., Mishra, V., & Singh, D. (2022). Enhanced risk of concurrent regional droughts with increased ENSO variability and warming. Nature Climate Change, 12(2), 163-170.

Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B., ... & Wilheit, T. (2017). The Global Precipitation Measurement (GPM) mission for science and society. Bulletin of the American Meteorological Society, 98(8), 1679-1695.

Sun, X., Renard, B., Thyer, M., Westra, S., & Lang, M. (2015). A global analysis of the asymmetric effect of ENSO on extreme precipitation. Journal of Hydrology, 530, 51-65.

Vega, J., Barco, J., & Hidalgo, C. (2024). Space-time analysis of the relationship between landslides occurrence, rainfall variability and ENSO in the Tropical Andean Mountain region in Colombia. Landslides, 1-22.

Veldkamp, T. I., Wada, Y., de Moel, H., Kummu, M., Eisner, S., Aerts, J. C., & Ward, P. J. (2015). Changing mechanism of global water scarcity events: Impacts of socioeconomic changes and inter-annual hydro-climatic variability. Global Environmental Change, 32, 18-29.

Vilímek, V., Hanzlík, J., Sládek, I., Šandov, M., & Santillán, N. (2013). The share of landslides in the occurrence of natural hazards and the significance of El Niño in the Cordillera Blanca and Cordillera Negra Mountains, Peru. Landslides: global risk preparedness, 133-148.

Wang, C. (2007). Variability of the Caribbean low-level jet and its relations to climate. Climate dynamics, 29, 411-422.

Woyessa, A., Siebert, A., Owusu, A., Cousin, R., Dinku, T., & Thomson, M. C. (2023). El Niño and other climatic drivers of epidemic malaria in Ethiopia: new tools for national health adaptation plans. Malaria Journal, 22(1), 195.

Yan, Y., Wu, H., Gu, G., Ward, P. J., Luo, L., Li, X., ... & Tao, J. (2020). Exploring the ENSO impact on Basin‐scale floods using hydrological simulations and TRMM precipitation. Geophysical research letters, 47(22), e2020GL089476.

Yang, X., Wu, J., Liu, J., & Ye, X. (2021). Changes of extreme precipitation and possible influence of ENSO events in a humid basin in China. Atmosphere, 12(11), 1522.

Published

2025-12-02

Issue

Section

RESEARCH ARTICLE

How to Cite

Impactos de la Oscilación del Sur de El Niño en la variabilidad hidroclimatológica de una cuenca andina tropical a partir de conjuntos de datos finos espacializados. (2025). CIOH Scientific Bulletin, 44(2). https://doi.org/10.26640/22159045.2025.654

Similar Articles

1-10 of 50

You may also start an advanced similarity search for this article.