Detection of pathogenic microorganisms in ballast water of internationally trafficked vessels that arrived at maritime ports on the Colombian Atlantic coast during the years 2020 to 2023

Authors

  • Ninibeth Nicol Cortés Leal Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe
  • Karen López Suárez Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe https://orcid.org/0000-0001-6206-4577

DOI:

https://doi.org/10.26640/22159045.2025.639

Keywords:

ballast water, ship, water filtration, microorganism, ports, maritime transport

Abstract

Ballast water has historically been used in vessels to maintain their stability during navigation. However, this practice posed a significant environmental risk, as it facilitated the transport of marine organisms from one ecosystem to another. To mitigate this impact, international regulations were implemented, including the D-2 standard established by the International Maritime Organization (IMO), which requires the reduction or elimination of living organisms through onboard treatment systems. In this context, the present study aimed to detect pathogens in ballast water in Colombian seaports, in order to verify compliance with Resolution 477 of 2012 issued by the General Maritime Directorate (DIMAR). The study area included the ships that arrived at various Colombian seaports. The methodology used was the sampling directly from the ballast water tanks for the detection of indicator microorganisms defined by standard D-2 specifically Vibrio cholerae, Escherichia coli (E. coli) and intestinal enterococci. The results also included a review of vessel log documentation to verify the validity of the investigation, showed that Vibrio cholerae presented a concentration of <1 colony-forming unit (CFU) per 100 ml in all monitored years (2020 to 2023). In the case of E. coli, growth was evidenced in one ballast water tank in the year 2023; however, the values remained within the permissible limits established by the regulation. For its part, intestinal enterococci showed a growth exceeding 100 CFU/100 ml in two sampled ships in the years 2020 and 2023, exceeding the values stipulated by standard D-2. Similarly, the vessels comply with the records as of the implementation of the treatment systems. The study reinforces the importance of having regulations that allow for comprehensive management of environmental sustainability in the oceans, and that, when regulated, monitoring is continuous

Downloads

Download data is not yet available.

References

Almagro-Moreno S. y Taylor, R. K. (2013). Cholera: Environmental Reservoirs and Impact on Disease Transmission. Microbiol Spectr 1:10.1128/microbiolspec.oh-0003-2012. https://doi.org/10.1128/microbiolspec.oh-0003-2012. PMCid:PMC4321695 APHA/AWWA/WEF. (2017). Standard Methods for the Examination of Water and Wastewater.(23rd ed.). American Public Health

Association.Asociación Española de Normalización. (2000). UNE-EN ISO 7899-2:2000. Calidad del agua - Detección y enumeración de enterococos intestinales - Parte 2: Método de filtración de membrana. AENOR.

Bakalar, G. (2016). Comparisons of interdisciplinary ballast water treatment systems and operational experiences from ships. In SpringerPlus(Vol. 5, Issue 1, pp. 1–12). SpringerOpen. https://doi.org/10.1186/s40064-016-1916-z. PMid:27026934 PMCid:PMC4771674

Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R. y Harwood, V.J. (2012). Enterococci in the environment. Microbiol Mol Biol Rev. 2012 Dec;76(4):685-706. DOI: 10.1128/MMBR.00023-12. PMID: 23204362; PMCID: PMC3510518

Davidson, I. C.; Minton, M. S.; Carney, K. J.; Miller, A. W. y Ruiz, G. M. (2017). Pioneering patterns of ballast treatment in the emerging era of marine vector management. Marine Policy, 78 (November 2016), 158–162. https://doi.org/10.1016/j.marpol.2017.01.021

First, M. R.; Robbins-Wamsley, S. H.; Riley, S. C. y Drake, L. A. (2016). Towards minimizing transport of aquatic nuisance species in ballast water: Do organisms in different size classes respond uniformly to biocidal treatment?. Biological Invasions, 18(3), 647–660. https://doi.org/10.1007/s10530-015-1036-7

Hess-Erga, O. K.; Moreno-Andrés, J.; Enger, Ø. y Vadstein, O. (2019). Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. In Science of the Total Environment (Vol. 657, pp. 704–716). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2018.12.004. PMid:30677936

International Organization for Standardization. (2017). ISO 9308-1:2014/A1:2017. Water quality — Enumeration of Escherichia coli and coliform bacteria — Part 1: Membrane filtration method for waters with low bacterial background flora — Amendment 1. ISO.

Jang, J.; Hur, H.G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T. y Ishii, S. (2017). Environmental Escherichia coli: ecology and public health implications-a review. J Appl Microbiol. 2017 Sep;123(3):570-581. doi: 10.1111/jam.13468. Epub 2017 Jul 3. PMID: 28383815.

Nanayakkara, K. G. N.; Zheng, Y. M.; Alam, A. K. M. K.; Zou, S. y Chen, J. P. (2011). Electrochemical disinfection for ballast water management: Technology development and risk assessment. Marine Pollution Bulletin,63(5–12), 119–123. https://doi.org/10.1016/j.marpolbul.2011.03.003. PMid:21474153

Organización Marítima Internacional. (2004). Convenio internacional para el control y la gestión del agua de lastre y los sedimentos de los buques (Estándar D-2). Londres: OMI. https://www.imo.org/es/OurWork/Environment/Paginas/BallastWaterManagement.aspx

Romero-Martínez, L.; Moreno-Andrés, J.; Acevedo-Merino, A. y Nebot, E. (2014). Improvement of ballast water disinfection using a photocatalytic (UV-C + TiO2) flow-through reactor for saltwater treatment. Journal of Chemical Technology and Biotechnology, 89(8), 1203–1210. https://doi.org/10.1002/jctb.4385

Ruiz, G. M.; Rawlings, T. K.; Dobbs, F. C.; Drake, L. A.; Mullady, T.; Huq, A. y Colwell, R. R. (2000). Global spread of microorganisms by ships. Nature, 408(6808), 49–50. https://doi.org/10.1038/35040695. PMid:11081499

Sellera, F. P.; Lincopan, N.; Stehling, E. G. y Furlan, J. P. R. (2024). Critical-priority resistant bacteria hidden in ship ballast water: A challenge for global epidemiological surveillance. New Microbes and New Infections, 58, 101236. https://doi.org/10.1016/j.nmni.2024.101236. PMid:38533484 PMCid:PMC10963218

Stehouwer, P. P.; Buma, A. y Peperzak, L. (2015). A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide. Environmental Technology (United Kingdom), 36(16), 2094–2104. https://doi.org/10.1080/09593330.2015.1021858. PMid:25704551

Tsolaki, E. y Diamadopoulos, E. (2010). Technologies for ballast water treatment: A review. Journal of Chemical Technology and Biotechnology, 85(1), 19–32. https://doi.org/10.1002/jctb.2276

UNCTAD, S. de la C. de las N. U. sobre C. y D. (2017). Informe sobre el transporte marítimo 2017. 19098.

UNCTAD, S. de la C. de las N. U. sobre C. y D. (2023). Informe sobre transporte marítimo 2023. https://doi.org/10.30875/f8c67971-es

Published

2025-12-04

Issue

Section

RESEARCH ARTICLE

How to Cite

Detection of pathogenic microorganisms in ballast water of internationally trafficked vessels that arrived at maritime ports on the Colombian Atlantic coast during the years 2020 to 2023. (2025). CIOH Scientific Bulletin, 44(1), 19-28. https://doi.org/10.26640/22159045.2025.639

Similar Articles

1-10 of 358

You may also start an advanced similarity search for this article.