Application of Data Science for the reconstruction of time series of meteorological variables in the Islas del Rosario (Colombian Caribbean), between the years 2013-2021

Authors

DOI:

https://doi.org/10.26640/22159045.2022.604

Keywords:

Time series, meteorology, missing values, air temperature, wind magnitude

Abstract

This study reviews two time series of meteorological variables measured by an automatic station located in Islas del Rosario (Colombian Caribbean), belonging to the Network for Measurement of Oceanographic Parameters and Marine Meteorology (RedMpomm) of the General Maritime Directorate (Dimar). The time series correspond to data of air temperature and wind magnitude in the period 2013-2021, which present some missing values. The objective of the study was to develop a model that would automatically reconstruct missing values in the time series, using the advantages of data science to complete information with estimated values. The importance of obtaining reconstructed series lies in having more solid databases to be used in the research and academic work carried out by Dimar. The methodology developed consisted of the use of imputation of medians from existing data on dates and times associated with missing values, all this through the use of data lags and complementary information such as periodicity relationships on the data set. The results showed that it was possible to implement a reliable methodology capable of estimating the most appropriate value to complete the different time series, which constitutes a first approximation for reconstruction of meteorological data.

Downloads

Download data is not yet available.

Published

2022-12-30

Issue

Section

SHORT ARTICLE

How to Cite

Application of Data Science for the reconstruction of time series of meteorological variables in the Islas del Rosario (Colombian Caribbean), between the years 2013-2021. (2022). CIOH Scientific Bulletin, 41(2). https://doi.org/10.26640/22159045.2022.604

Similar Articles

1-10 of 349

You may also start an advanced similarity search for this article.