Hurricane wave simulation using parametric wind models in a Third Generation wave model

Authors

  • Omar G. Lizano Centro de Investigaciones Geofísicas (CIGEFI). Centro de Investigaciones en Ciencias del Mar y Limnología (CIMAR). Departamento de Física Atmosférica, Oceánica y Planetaria (DFAOP). Escuela de Física, Universidad de Costa Rica. San José, Costa Rica.

DOI:

https://doi.org/10.26640/22159045.147

Keywords:

Parametric wind models, wave forecast, hurricane waves, Gulf of Mexico, Third Generation wave models

Abstract

Two parametric wind models were used to simulate the hurricane wave distribution in the so-called third-generation wave models. Several hurricane conditions in the Gulf of Mexico and in front of the Florida peninsula were used for testing and adjusting the wind models. Information usually available in the meteorological offices, such as hurricane central pressure, maximum wind radio, and the geographic positions, are the only input data needed to create a wind profile with these parametric models. Good results were achieved between the measured wave height and those simulated by the wave model. The out comes of this study show the usefulness of these tools to carry out wave forecasting and hind casting during hurricane conditions in the region. This information is valuable for governmental entities in order to make the appropriate decisions in the eventuality of the presence of these weather phenomena, which could be more frequent and in tense in the future.

Downloads

Download data is not yet available.

References

[1] Myers VA. Characteristics of U.S. hurricanes pertinent to levee design for Lake Okeechobee. Florida. U.S. Weather Bureau. Hydromet. Report No. 32.1954; p.106.

[2] Murty TS. Storm surges, Meteorological Ocean Tides. Canadian Bulletin of Fisheries and Aquatic. Sciences. 1984; 212.

[3] Holton JR. Introduction to dynamic meteorology. Academic Press, NewYork. 1992; p.319.

[4] Reyes S. Introducción a la meteorología. Universidad Autónoma de Baja California. B.C. México. 200; p. 464.

[5] Depperman CE. Notes on the origin and structure of Philippine Typhoons. Bull. Amer. Meteor. Soc. 1947; 28: 399-404.

[6] Jelesniansky CP. A numerical calculation of store tides induces by a tropical store impinging on a continental shelf. Mon. Weather Rev.1965; 93: 343-360.

[7] Jelesniansky CP. SPLASH (Special program to list amplitudes of surges from hurricanes): 1. Land fall Storms. TM-46. (COM-72-10807). Nacional Weather Service. NOAA. 1972;p. 52.

[8] Patterson MM. Hindcasting hurricane waves in the Gulf of Mexico. J. Petrol. Eng. 1972; p. 321-328.

[9] Collins J, and Viehman M. A simplified empirical model for hurricane wind fields. Paper No. OTC 1346. Offshore Technology Conference.1971.

[10] Overland JE. Providing winds for wave models: In: Earle MD, and Malahoff A.(eds.), ocean wave climate. Plenum press. NewYork. 1977; p. 3-37.

[11] Pagenkopf JR, and Pearce BR. Evaluation of techniques for numerical calculation of storm surges. Report No. 119. Department of Civil Engineering, MIT. Cambridge, Massachusetts. 1975; p.120.

[12] Holland GJ. Analytical model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 1980; 108: 1212-1218.

[13] Vickery PJ, and Twisdale A. Wind-field and filling models for hurricane wind-speed predictions. ASCEJ. Struct. Eng. 1995; 121(ll): 1700-1709.

[14] Cardone VJ, Greenwood CV, and Greenwood JA. Unified program for the specification of hurricane boundary layer winds over surfaces of specified roughness. Final Report. Contract Report CERC-92-1. Department of Army Waterways Experiment Station, Vicksburg, MS. 1992.

[15] Chow SH. A study of the wind field in the planetary boundary layer of a moving tropical cyclone. M. Sc. Thesis in Meteorology, School of Engineering and Science. New York University, NewYork. 1971.

[16] CEM (Coastal engineering manual). PartII. Chapter 2. Meteorology and waveclimate. Publications from Marine Construction and Coastal Engineering. Revisado 03 de marzo, 2007. Home Page: http://www.vulcanhammer.net/marine/.

[17] Cardone VJ, Cox AT, Greenwood JA, and Thompson EF. Upgrade of the tropical cyclone surface wind field model. Miscellaneous paper CERC-94-14. U.S. Army Corps of Engineers. 1994.

[18] Cardone VJ, Jensen RR, Resio DT, Swail VR. and Cox AT. Evaluation of contemporary ocean wave models in rare extreme events: The “Halloween Storm” of October 1991 and the “Storm of the Century” of March1993. J. Atmos. Oceanic Technol. 1996; 13 (l): 198-230.

[19] Vickery PJ, Skerlj PF, Steckley AC, and Twisdale LA. Hurricane wind field model for use in hurricane simulations. ASCEJ. Struct. Eng. 2000; 126 (10): 1203-1221.

[20] De Maria M, Aberson SD, and Ooyama KV. Nested spectral model for hurricane track forecasting. Mon. Weather Rev. 1992; 120: 1628-1640.

[21] SPM (Shore protection manual). Volume I. Department of the Army. Waterways experiments station, Corps of Engineers, Vicksburg, Mississippi. 1984.

[22] Lizano OG. Modelo de viento ajustado a un modelo de generación de olas para el pronóstico durante huracanes. Geofísica. 1990; 33: 75-103.45

23] Gica E, and Teng MH. Numerical simulation of storm surge generated by Hurricane Iwa in Hawaii. 15th ASCE Engineering Mechanics Conference. EM 2002. Columbia University, New York. 2002.

[24] Peng M, XieL, and Pietrafesa LJ. A numerical study of storm surge and inundation in the Croatan-Albermarle-Pamlico estuary system. Estuarine, Coastal and Shelf Science. 2003; 59: 121-137.

[25] WANDI Group. The WAM Model-A Third generation ocean wave prediction model. J. Phys. Oceanogr. 1988; 18: 1775-1809.

[26] SWAMP Group. Ocean wave modeling. Plenum press. New York. 1985; p. 256.

[27] Ponce S, and Ocampo-Torres FJ. Sensitivity of wave model to wind variability. J. Geophys. Res. 1998; 103 (C2): 3179-3201.

[28] Young IR, and Burchell GP. Hurricane generated waves as observed by satellite. Ocean Engng. 1996; 23(8):761-776.

[29] Wornom SF, Welsh DJ, and Bedford KW. On coupling the SWAN and WAM wave models for accurate nearshore wave predictions. J. Coast. Engng. 2001; 43 (3): 161-201.

[30] Ris RC. Communications on hydraulic and geotechnical engineering. Spectral modeling of wind waves in coastal areas. Report No. 97-4. Faculty of Civil Engineering. Delf University of Technology. 1997; p. 160.

[31] Padilla-Hemández R, Osuna P, Monbaliu J, and Holthuijsen L. Intercomparing third-generation wave model nesting, 5th International Workshop on Wave Hindcasting and Forecasting, Jan. 27-30, Melbourne, Florida. 1998; p. 102-112.

[32] Lizano OG. Modelo de predicción de olas generadas por huracanes en el Mar Caribe. Ph. D. Thesis in Department of Marine Sciences. University of Puerto Rico. Mayagüez Campus. 1988; p. ll8.

[33] Lizano OG, Ocampo FO, Alvarado LF, Puig JM, y Vega R. Evaluación de modelos numéricos de tercera generación para el pronóstico de oleaje en Centroamérica y México. Tóp. Meteorol. Oceanog. 2001; 8 (l): 40-49.

[34] Hsu S. A, and Yan Z. A note on the radius of maximum wind for hurricanes. J. Coast. Research. 1998; 14 (2):667-668.

[35] Hsu SA, Martin Jr. MF., and Blanchard BW. An evaluation of the USACE's deepwater wave prediction techniques under hurricane conditions during Georges in 1998. J. Coast. Research. 2000; 16 (3): 823-829.

[36] Lizano OG. Efectos del tamaño de rejilla y el número de frecuencias en un modelo espectral de pronóstico de olas. Tóp. Meteorol. Oceanog. 1997; 4 (l): 39-50.

[37] Willoughby HE, and Rahn, ME. Parametric representation of the primary vortex. Part I: Observation and evaluation of the Holland (1980) Model. Mon. Weather. Rev. 2004; 132: 3033-3048.

Downloads

Published

2006-12-01

Issue

Section

RESEARCH ARTICLE

How to Cite

Hurricane wave simulation using parametric wind models in a Third Generation wave model. (2006). CIOH Scientific Bulletin, 24, 36-47. https://doi.org/10.26640/22159045.147

Similar Articles

1-10 of 351

You may also start an advanced similarity search for this article.