Spatial behavior of chemical variables in the Pacific Colombian Basin CPC LI
DOI:
https://doi.org/10.26640/22159045.253Keywords:
Oceanography, Colombian Pacific Basin, upwelling system, nutrientsAbstract
In order to know the chemical behavior of the Pacific Colombian Basin, there were analyzed in situ water samples results taken in the frame of the oceanographic cruise Pacific Colombian Basin version LI, realized between September the 5th and 20th of 2012, on board of the oceanographic vessel ARC Providencia. The measurements in situ were taken in 24 stations located between the coordinates 77°45’W to 84°00’ W and 1°30’N to 6°30’N. The concentration of dissolved oxygen ranged between 6,53 and 6,97 mg/L, with zones of major concentration in coastal areas and in the oceanic part around 2ºN. The presence of the nitrogen as nitrates had values between 0,06 and 32,22 μM all over the basin surface, meanwhile the values registered for the nitrites where 0.04 μM approximately, principally between 4 and 5 oN. Relating to the photosynthetic pigments represented by the chlorophyll a, the highest concetrations registered in nearness to the coast and in the northern part of the basin. The highest values, of the order of 0.42mg/m3, were located towards the central part to the south of the basin, at 4ºN, indicating a possible development of upwelled waters in the region located between the 3º and 4ºN, indicating a possible development of upwelled waters in the region located between the 3º and 4º and 80o and 82oW. Also it is important to mention that the pH changed between 8.15 and 8.25, while the phosphates were understood between 0.01 and 2.09 μM, presenting the major concentrations in nearness to the coast between the 3º and 4º degrees north. The silicates on the contrary presented major concentrations in the oceanic region, punctually between 4ºN and 82ºW, with values understood between 0.43 and 6.16 μM. The averages of sea surface temperature and salinity were 26.45ºC and 31.43 respectively. Both halocline and thermocline were situated close the 30 meters depth 31.43 UPS. Both halocline and thermocline were situated close the 30 meters depth. The chemical behavior might be related to possible condition of neutrality with related to the development of an El Niño event. This study could de considered the first research that characterizes chemically the basin, based on in situ data, then it is supposed as an important contribution to future studies of characterization upwelling and productivity areas in the Colombian Pacific Basin.Downloads
References
[2] Compilación oceanográfica de la Cuenca Pacífica Colombiana. 2002. Centro Control Contaminación del Pacífico (CCCP). Tumaco, 109 pp.
[3] Pabón, J., J. Eslava &. R. Gómez. 2001. Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorol. Colomb. 4: 47-59. ISSN0124-6984.
[4] Wooster W. 1959. Oceanographic observations in the Panama Bight. Askoy Expedition, 1941. Amer. Mus. Nat. Hist. Bull. 118 (3): 115-151.
[5] Bjerknes J. 1961. El Niño study based on analysis of ocean surface temperatures,1935-57 (in English and Spanish). Inter-Am. Trop. Tuna Comm. Bull. 5 (3): 217303.
[6] Pineda A. 1995. Condiciones hidrológicas en la Cuenca del Pacífico Colombiano. Boletín Científico CCCP. (5): 73-97.
[7] Rodríguez-Rubio E, Schneider W, Abarca del Río R. 2003. On the seasonal circulation within the Panama Bight derived from satellite observations if wind, altimetry and sea surface temperature. Geophysical Research Letters. 30 (7): 63-67.
[8] Rodríguez-Rubio E, Giraldo A. 2011. Características oceanográfícas en la Isla Malpelo y su relación con la Cuenca del Pacífico Colombiano. Bol. Invest. Mar. Cost. 19-32.
[9] Rojas-Higuera P J, Ortiz J R. 2007. Comportamiento del fitoplancton durante el evento ENOS en el océano Pacífico colombiano. Ingeniería de Recursos Naturales y del Ambiente. 6: 5-15.
[10] Villegas N. 1997 a. Estudio del movimiento de las aguas en la región este de la cuenca del Pacífico colombiano. Centro Control Contaminación del Pacífico. San Andrés de Tumaco. Bol. Cient. CCCP 6: 71-80.
[11] Villegas, N. 1997 b. Movimiento vertical de las aguas en el Pacífico colombiano durante junio y octubre de 1996. Centro Control Contaminación del Pacífico. San Andrés de Tumaco. Bol. Cient. CCCP 6: 81-93.
[12] Villegas, N. 2002. Evolución mensual de las corrientes verticales y zonas de surgencia en la cuenca del Pacífico colombiano-CPC. Centro Control Contaminación del Pacífico. San Andrés de Tumaco. Bol. Cient. CCCP 9: 29-36.
[13] Manual de Cruceros Oceanográficos. 2012. Centro de Investigaciones Oceanográficas e Hidrográficas del Pacífico. 2012. San Andrés de Tumaco, 51 pp.
[14] APHA, AWWA, WEF. 2005. Standard Methods for the Examination of Water and Waste water. 21th Ed. Washington, American Public, Health Association.
[15] Strickland, J. D. H. & Parsons, T. R. 1972. A practical handbook of seawater analysis. 2nd ed. J. Fish. Res. Bd. Canada.
[16] Murphy, J. &. Riley, J. P. 1958. A single solution method for determination of soluble phosphate in seawater. J. Mar. Boil. Ass. 37 9-14.
[17] Gómez, C. y Martínez, I. 2005. Nueva productividad biológica en el Pacífico Oriental Ecuatorial: respuesta al aporte de nutrientes por los ríos del Pacífico colombiano, surgencia costera y polvo atmosférico. Boletín de Geología (2): 99114.
[18] Andrade, C. A. 1992. Movimiento geostrófico en el Pacífico colombiano, Bol. Cient.CIOH, 12: 23-38.
[19] Mállkov, I. y Villegas, N. 2010. Proceso de mezcla vertical en las masas de agua de la Cuenca Pacífica Colombiana y comportamiento anual de sus características termohalinas. Geología Colombiana 35:102-112.
[20] Pilson, M. E. Q. 1998. An Introduction to the chemistry of the sea: Upper Saddle River, New Jersey, Prentice-Hall. 431 pp.
[21] Wyrtki, K. 1967. Circulation and water masses In the eastern equatorial Pacific Ocean. Int .J. Oceanol. Limnol. 1 (2), 117-147.
[22] Pak, H. & J. R. Zaneveld. 1974. Equatorial Front in the Eastern Pacific Ocean. Vol. 4, No. 4, pp. 570-578.
[23] Betancur, M. & Martínez, I. Foraminíferos bentónicos recientes en sedimentos de fondo de la Cuenca de Panamá (Pacífico colombiano), como indicadores de productividad y oxigenación. Boletín Investigaciones Marinas y Costeras, 32: 93-123.
[24] Barber, R. & Chávez, F. 1991. Regulations of primary production rate in the equatorial Pacific. Limnology Oceanography. Vol. 36, 1803-1815.
[25] Cullen, J. J. 1991. Hyphotheses to explain high nutrient conditions in the open sea. Limnol. Oceanogr. 36: 1578-1599.
[26] Mann, K. & J. Lazier. 2006. Dynamics of Marine Ecosystems: Biological Physical Interactions in the Oceans. 3rd. ed. ISBN-10: 1-4051-1118-6. 444 pp.
[27] Hutchins, D. A., Mulholland, M. R, & Fu, F. 2009. Nutrient cycles and marine microbes in a CO2 enriched ocean. Oceanography. 22: 128-145.
[28] Martin - Jézéquel, V., Hildebrand, M. & Brzezinski, M. A. 2000. Silicon metabolism in diatoms: Implications for growth. J. Phycol. (36): 821-840.
[29] Goldberg, E. D., Walker, T. J. & Whisenand, A. 1951. Phosphate utilization by diatoms. Biological Bulletin. (101): 274-284.
[30] Comisión Permanente del Pacífico Sur. 2012. Boletín de Alerta Climático BAC No. 264. Septiembre.
[31] Multivariate ENSO Index (MEI). [Intenet], U.S. Department of Commerce: National Oceanic & Atmospheric Administration. [citado 2013 jul 30],[Disponible en: http://www.esrl.noaa.gov/psd/enso/mel/index.html].
Downloads
Published
Issue
Section
License
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.