Contenido principal del artículo

Alejandro Rueda
Serguei Lonin

En el presente documento se define el concepto de un rompeolas flotante, sus principales características, con una amplia reseña histórica, el desarrollo analítico de obras desde la perspectiva de su eficiencia en los problemas de Ingeniería Costera. Se hace énfasis en la posibilidad de aplicación de estas estructuras con el propósito de defensa costera, entre otros fines, tales como la generación de áreas de alivio para las operaciones navales y desembarque en los muelles costeros.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Metricas alternativas PLUMX

Rueda, A., & Lonin, S. (2012). Rompeolas flotantes: revisión histórica y académica. Boletín Científico CIOH, (30), 43-52. https://doi.org/10.26640/22159045.242

Alejandro Rueda, Universidad de Las Palmas de Gran Canaria

Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35017 - Las Palmas de Gran Canaria, España.

Serguei Lonin, Centro de Investigaciones Oceanográficas e Hidrográficas (CIOH)

Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe (CIOH), Barrio Bosque, Isla de Manzanillo, Escuela Naval de Cadetes Almirante Padilla, Cartagena, Colombia.

[1] Hales, Z. L. Floating Breakwaters: State of the Art, U.S Army Corps of Engineers. Technical Report No 81-1 Cap. 1. pp. 23-45, 1981.

[2] De la Sala, P. Revista de Obras Públicas. Rompeolas Flotantes. Vol. 14; pp. 165-167 and Vol.15, pp.178-181. 1873.

[3] Jones, D. Transportable Breakwaters—A Survey of Concepts, Technical Report R-727, U.S. Navy Civil Engineering Laboratory, 1971.

[4] Richey, E.P. & Nece, R.E. “Floating Breakwaters: State-of-the-Art,” Proceedings of the Floating Breakwaters Conference, University of Rhode Island, Kingston, R.I., pp. 1-20. (1974).

[5] Carr, J. H. Mobile Breakwater Studies: Hydrodynamics. Laboratory Report No. N-64.2, California Institute of Technology, 1950.

[6] Brebner, A. & Ofuya, A. Floating Breakwaters, Proceeding of 11th Conference on Coastal Engineering, London, 1968, ASCE, 2, pp. 1055-1094, 1969.

[7] Wehausen, J. Motion of Floating Bodies. Annual Review Of Fluid Mechanics, 3, pp. 237, 1971.

[8] Stiassnie, M. A simple mathematical model of a floating breakwater, Applied Ocean Research, 2 (3), pp. 107-111, 1980.

[9] United State. U.S Army Corps of Engineers. Coastal Engineering Manual. EM 1110-2-1100, 3, pp. 1-36. 2002.

[10] Isaacson, M. & Sinha, S. Directional Wave effects on Large Offshore Structures. Journal of. Waterway, Port, Coastal and Ocean Engineering. 112 (4), pp. 482-497, 1986.

[11] Volker, W. reakwater Performance Comparison. Coastal Engineering Proceedings, 17, pp. 2137-2158. 1980.

[12] Bruce, L. Floating Breakwater Design, J. Waterway, Port, Coastal, Ocean Eng. 111, pp. 304-318, 1985.

[13] Peña, E., Ferreras, J. and Sánchez-Tembleque, F. Experimental study on wave transmission coefficient, mooring lines and module connector forces with different designs of floating breakwaters. Ocean Engineering, 38, pp.1150–1160, 2011.

[14] Torum, A., Stansberg, C.T., Otterá, G.O., Sláttelid, O.H. Model tests on the CERC full scales test floating breakwater, final report, AD-A204 145. United States Army. 1987.

[15] Adee, B. Floating Breakwater Performance. Coastal Engineering, 15, pp. 2777-2791, 1976.

[16] Yamamoto, T. Moored Floating Breakwater response to regular and Irregular Waves. Applied Ocean Research, 3, pp. 85-92, 1981.

[17] Murali, K., Amer, S.S. & Mani, J.S. Dynamics of cage floating breakwater. Journal of Offshore Mechanics and Arctic Engineering.Transactions of the ASME, 127(4), pp. 331-339, 1997.

[18] Yoon, J. & Cho, S., Experimental Research on Effective Floating Breakwaters. Journal of Coastal Research, Special Issue 64, pp. 631 – 635, 2011.

[19] Isaacson, M. & Nwogu, O.U. Wave Loads and Motions of Long Structures in Directional Seas. Journal of Offshore Mechanics and arctic Engineering, 109, pp. 126-132, 1987.

[20] Sannasiraj, S.A., Sundar, V., Sundaravadivelu, R. Mooring Forces and Motion Responses of Pontoon-Type Floating breakwaters. Ocean Engineering, 25(1), pp. 27-48, 1998.

[21] Sannasiraj, S.A., Sundaravadivelu, R., Sundar, V. Difraction-radiation of Multiple Floating Structures in Directional Waves. Ocean Engineering, 28(2), pp. 201-234, 2000.

[22] Koutandos, E., Karambas, Th., Koutitas, C., Prinos, P. Floating Breakwaters Efficiency in Intermediate and Shallow Waters. Procceding of the 5th International Conference on Hydro –Science and Engineering, Portland, pp. 1-10, 2002.

[23] Koutandos, E., Prinos, P., Gironella, X. Floating Breakwaters under Regular and Irregular Wave Forcing: Reflection and Transmission Characteristics. Journal of Hydraulic Research, 43(2), pp. 174-188, 2005.

[24] Loukogeorgaki, E., Michailides, C. & Angelides, C. Hydroelastic Analysis of a Flexible Mat-Shaped Floating Breakwater under Oblique wave Action. Journal of Fluids and structures. 31, pp. 103-124, 2012.

[25] Gingold, R. & Monaghan, J. Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Mon Not R Astr Soc, 181, pp. 375-389, 1977.

[26] Monaghan, J. Smoothed Particle Hydrodynamics. Annual Rev Astron. Appl., 30, pp. 543-574, 1992.

[27] Monaghan, J. Simulating free Surface Flows with SPH. Journal Computational Physics, 110, pp. 399-406, 1994.

[28] Gómez-Gesteira, M. & Dalrymple, R.A. Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure, Journal of. Waterway, Port, Coastal and Ocean Engineering, 130(2), pp. 63–69, 2004.

[29] Gómez-Gesteira, M., Cerqueiro, D., Crespo, A. & Dalrymple, R. Green water overtopping analyzed with a SPH model. Ocean Engineering, 32, pp. 223-238, 2005.

[30] Dalrymple, R.A. & Rogers, B. Numerical modeling of water waves with the SPH method. Coastal Engineering, 53, pp. 141-147, 2006.

[31] Crespo, A.J.C., Gómez-Gesteira, M. & Dalrymple, R.A. 3D SPH simulation of large waves mitigation with a dike. Journal of Hydraulic Research, 45(5), pp. 631- 642, 2007a.

[32] Crespo, A.J.C., Gómez-Gesteira, M. & Dalrymple, R.A. Modeling Dam Break Behavior over a Wet Bed by a SPH Technique. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(6), pp. 313-320, 2008.

[33] Lo, E. & Shao, S. Simulations of Near-Shore solitary Wave Mechanics by an incompressible SPH Method. Applied Ocean research, 24, pp. 275-286, 2004.

[34] Shao, S. SPH simulation of a solitary wave interaction with a curtain-type breakwater. Journal of Hydraulic research, 43 (4), pp. 366-375, 2005.

[35] Najafi, A. & Mazyak, A. Numerical Investigation of Floating Breakwater Movement using SPH Method. Inter J Nav Oc Engng, 3, pp. 122-125, 2011.

[36] Rueda, A., Crespo, A. & Rodríguez, G. Evaluation of wave energy transmission through a floating breakwater using a SPH method. Fluid Structure Interaction VII, pp.13-24, 2013.

[37] Allyn, N., Watchorn, E., Jamieson, W. & Yang, G. Port of Brownsville Floating Breakwater. Proc. Ports Conference, 2001.Wang, H., and Sun, Z., Experimental Study of a Porous Floating Breakwater. Ocean Engineering, 37, pp. 520-527, 2010.

[38] Permanent International Association of navigation Congress–PIANC. Floating Breakwaters: A Practical Guide for Design and Construction. Report of working group No 13 of the permanent technical committee II, 1994.

[39] Wang, H. & Sun, Z. Experimental Study of a Porous Floating Breakwater. Ocean Engineering, 37, pp. 520-527, 2010.

[40] Fousert, M. Floating Breakwater: Theorical Study of a Dynamic wave Attenuating System. Master Thesis, Delft University of Technology, 2006.

[41] Manuel, B. Response of a Pile restrained Floating Breakwater. Master Thesis, University of British Columbia, 1997.

[42] Chen, k. & Wiegel, R.L. Floating breakwater for reservoir marines. Proc. Of the 12thCoastal Engineer. Pp. 487-506, 1970.

[43] Batchelor, G. Introduction to Fluid Dynamics. Cambridge University Press, 1974.

[44] Williams A.N. & Abul-Azm A.G. Dual pontoon floating breakwater. Ocean Engineering. 24(5), pp. 465–78, 1997.

[45] Williams, A.N., Lee, H.S. & Huang, Z. Floating pontoon breakwaters. Ocean Engineering. 27, pp. 221–240, 2000.

[46] Elchahal, G., Lafon, P. & Younes, R. Design Optimization of Floating Breakwaters with an interdisciplinary Fluid-Solid Structural Problem. Can. J. Civ. Eng., 36, pp. 1732-1743, 2009.

[47] He, F., Huang, Z. & Wing, A. Hydrodynamic Perfonmance of a rectangular Floating Breakwater with and without Pneumatic Chambers: An Experimental Study. Ocean Engineering, 51, pp. 16-27, 2012.

[48] Martinelli, L., Piero, R. & Zanuttigh, B. Wave basin experiments on floating breakwaters with different layouts. Applied Ocean research, 30, pp. 199-207, 2008.

[49] Tadayon, N. Effect of geometric dimensions on the transmission coefficient of floating breakwaters. International Journal of Civil and Structural Engineering, 1(3), pp. 775-781, 2010.[50] Morris, J. & Kos, A. Solitary Waves on a Cretan Beach. Journal of Computational Physics, 136, pp. 214-226, 1997.

[50] Morris, J. & Kos, A. Solitary Waves on a Cretan Beach. Journal of Computational Physics, 136, pp. 214-226, 1997.

Detalles del artículo

Artículos más leídos del mismo autor/a

1 2 3 4 > >>