Tsunami hazards in the Colombian Pacific Coast: Cupica’s Gulf

Authors

  • Gary Javier González Núñez Base Naval ARC “Bolívar”, Cartagena de Indias, D.T. y C., Colombia
  • Luis Otero Diaz Centro de Investigaciones Oceanográficas e Hidrográficas (CIOH)

DOI:

https://doi.org/10.26640/22159045.213

Keywords:

Tsunami, Gulf of Cupica, ciudad Mutis, numerical model C3

Abstract

This article assesses the threat level to which the Gulf of Cupica (Chocó) is exposed, should an event of a tsunamigenic sort occur. The C3 numerical model (Cantabria, COMCOT and TsunamiCLAW) was used for the generation and propagation of the selected events in the assessment. The results show that the event which would generate greatest impact is the event proposed in the Colombian - Ecuadorian subduction zone of the historical source of the tsunami which occurred in 1906. In this event, the first wave train reached the coast 40 minutes after the event occurred, subsequently generating maximum displacement of the free surface equivalent to 6 m and wave heights up to 2.5 m. Other potential tsunami - generating sources were proposed; the first source is between Cabo Corrientes and Arusí, and the second source is located between Arusí and Cabo Marzo; both are northwest - bound. The results obtained with the two new sources proposed show that the second event (Arusí - Cabo Marzo) gene-rates waves with a maximum height equivalent to 2 meters for Ciudad Mutis and Huina. Said waves are quite similar to the values reported for the 1906 event. Ciudad Mutis is to be regarded as the district with the highest threat in case of the occurrence of an event of a tsunamigenic sort, since it yields the highest values of maximum displacement of the free surface. It was found that the configuration of the Gulf of Cupica, Punta de Solano, other morphological accidents and the bathymetry of the area generate resonant effects which cause the energy of tsunami waves to concentrate, thus aggravating the impact of the phenomenon in the Bahia de Solano coastal zone.

Downloads

Author Biographies

  • Gary Javier González Núñez, Base Naval ARC “Bolívar”, Cartagena de Indias, D.T. y C., Colombia

    Jefe Departamento de Operaciones ARC “Cartagena de Indias”. Base Naval ARC “Bolívar”, Cartagena de Indias, D.T. y C., Colombia

  • Luis Otero Diaz, Centro de Investigaciones Oceanográficas e Hidrográficas (CIOH)

    Centro de Investigaciones Oceanográficas e Hidrográficas (CIOH), Cartagena de Indias, D.T. y C., Colombia

References

[1] Otero L. Simulación Numérica de Tsunamis en el Litoral Pacífico Colombiano: Bahía de Tumaco. Universidad de Cantabria. Tesina de Máster para acceder al título de Msc. Ciencias y Tecnologías para la Gestión de la Costa 2003. Santander, España.

[2,3] United States Geological Survey. Summary, scientific and technical information of Northern Sumatra earthquake [en línea]. 2004 Dic 26 [citado 2010 Marzo 22]; disponible en internet en: http://earthquake.usgs.gov/earthquakes/
eqinthe-news/2004/us2004slav/#summary http://neic.usgs.gov/neis/eq_depot/2004/
eq_041226/neic_slav_hrv.html.

[4] Kelleher J. Rupture zones of large South America ear-thquakes and some predictions. J. Geophys. Res., 1972; 77: 2987-2103.

[5] Kanamori H, Mcnally K. Variable rupture mode of the subduction zone along the Ecuador – Colombia coast. Bull. Seismol. Soc. Am. 1982; 72: 1241 – 1253.

[6] Quiceno A, Ortiz M. Evaluación del Impacto de Tsunamis en el Litoral Pacífico Colombiano (Región de Tumaco), Boletín Científico CCCP 2001; No 8: 5-14.

[7] Caballero L, Ortiz M. Evaluación del impacto de tsunamis en el Litoral Pacífico Colombiano. Parte II (región de Buenaventura). Boletín Científico CCCP 2003; (9): 45-57.

[8] Cardona Y. Análisis del arribo de ondas de tsunami a las poblaciones de la Bahía de Tumaco a través de señales sintéticas. Boletín Científico CCCP 2004; (11): 42-49.

[9] Cardona Y, Toro F, Vélez J, Otero L. Estimación de la amenaza por inundación generada por ondas de tsunami considerando la altura y velocidad de la lámina de agua inundante para el municipio de Tumaco. Boletín Científico CCCP 2007; (14): 19-30. of Bahia de Tumaco through synthetic signals). CCCP Science Bulletin 2004, (11): 42-49

[10] Restrepo J. y Otero L. Modelación numérica de eventos tsunamigénicos en la Cuenca Pacífica Colombiana - Bahía de Buenaventura. Rev. Acad. Colomb. Cienc. 2007; 31(120): 363-377.

[11] Bastidas M. Estimación de riesgo por tsunami de origen cercano en jurisdicción del municipio de Buenaventura. Centro Control Contaminación del Pacífico Tumaco (Nariño), 2008.

[12] Departamento Administrativo Nacional de Estadística. Bogotá D.C., Colombia. Citado el 20 de marzo de 2009. Disponible en internet en: http://www.bahiasolano-choco.gov.co/apcaafiles/6337353132326637666
5336630306534/bahiasolano.pdf.

[13] Gutsher M, Malavielle J, Lallemand S, and Collot J-Y. Tectonic segmentation of the North Andean margin: impact of the Carnegie ridge collision. Earth and Planetary Science letters 1999;168, Elsevier: 255-270.

[14] Mendoza C, Dewey J. Seismicity associated with the great Colombia-Ecuador earthquakes of 1942, 1958 and 1979: Implications for barrier models of earthquake ruptura. Bull. Seis. Soc. Am. 1984; 74 (2): 577-593.

[15] Otero L, González E. Evaluación del Efecto de la Isla Barrera el Guamo Frente a la acción de Tsunamis en Tumaco. Boletín Científico CCCP 2005; (12): 49-61.

[16] Collot J-Y, et Al. Are rupture zone limits of great subduc-tion earthquakes controlled by upper plate structures? Evidence from multichannel seismic reflection data acquired across the northern Ecuador–southwest Co-lombia margin. Journal of Geophysical Research 2004; 109, B11103, doi:10.1029/2004JB003060.

[17] Paris G, Machette MN, Dart RL, Haller KM. Map and Database of Quaternary Faults and Folds in Colombia and its Off shore Regions. U.S. Geological Survey Open-File Report 00-0284, 2000.

[18] Taboada A, Dimaté C, Fuanzalinda A. Sismotectónica de Colombia: deformación continental activa y subducción. Física de la Tierra No 10, 1998; 111-147.

[19] Wells D, Coppersmith K. New empirical relationships among magnitude, ruptura length, rupture width, rupture area and surface displacements. Bull Seism. Soc. Am. 1994; (84): 974-1002.

[20] Liu, P.L-F et Al. Numerical simulation of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. Recent Developments in Tsunami Research, Netherlands: Kluver Aceademic Publishers 1994, 99-115.

[21] George, D.L. Finite volumen methods and adaptive refinement for tsunami propagation and inundation. PhD thesis, University of Washington, 2006.

[22] Synolakis CE, Bernard EN, Titov VV, Kano Lu U, Gonzalez FI. Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models. NOAA Tech. Memo. OAR PMEL-135, NOAA/Pacific Marine enviroment Laboratory, Seattle, WA, 2007, 55 pp.

[23] Otero L. Metodología para evaluar la peligrosidad debido a tsunamis en zonas costeras. Universidad de Cantabria. Escuela Técnica Superior de Caminos Canales y puertos. Tesis Doctoral 2008. Santander, España.

Downloads

Published

2010-12-05

Issue

Section

RESEARCH ARTICLE

How to Cite

Tsunami hazards in the Colombian Pacific Coast: Cupica’s Gulf. (2010). CIOH Scientific Bulletin, 28, 25-53. https://doi.org/10.26640/22159045.213

Similar Articles

1-10 of 349

You may also start an advanced similarity search for this article.