SWaN Model calibration and wave reanalysis validation in the Caribbean Sea
DOI:
https://doi.org/10.26640/22159045.249Keywords:
Wave assessment, SWaN model, wave buoys, CaribbeanAbstract
In order to calibrate the SWaN model (North American Regional Reanalysis, version 40.51) for the Caribbean Sea as well as to validate the hindcast conducted at the Center for Oceanographic and Hydrographic Research, CIOH, a wave propagation was performed using, as forcing the wind reanalysis from the North American Regional Reanalysis, NARR. The model calibration was performed through the physical parameterization of whitecapping using the Accumulative Steepness Method. Afterwards, model results were compared with data recorded at the buoys of the Dirección General Marítima between 2006 to 2010 both in time and time and in a probability domains. For the four studied cases (Providence, Turbo, Barranquilla and Puerto Bolivar), the model adequately produced the observed data for the seasonal changes as well as for the extreme events. The lowest linear correlation index was found for Puerto Bolivar´s buoy (0.69). By contrast, the highest correlation index was 0.87 at Turbo’s buoy. In general, the validation results show that the model reproduces adequately the actual conditions.Downloads
References
[2] North American Regional Reanalysis. National Centers for Environmental Prediction: North American Regional Reanalysis. [Actualizada: julio 12 de 2007; citada: agosto 2 de 2013], [Disponible en: http://www.emc.ncep.noaa.gov/mmb/rreanl/].
[3] AXYS Technologies Inc. Canada: AXYS Technologies Inc. (AXYS). [Visitado el primero de agosto de 2013], [Disponible en: http://www.axystechnologles.com/].
[4] Ris, R. C., Holthuijsen, L.H., Booij, N. (1999). A third generation wave model for coastal regions. 2. Verification. Delft University of Technology. Netherlands, 1999. Journal of geophysical research, Vol. 104, NO. C4, Abril de 1999. Pp. 76677681.
[5] Solvsteen, C. & Hansen, C. (2006). Validation of the operationa lwave models WAVEWATH - III and Mike 21 - OSW against satelliteal timetry and coastal buoys. Royal Danish administration of navigation and hydrography. Dinamarca, 2006. [Visitado el 15 de agosto de 2013. [Disponible en: http://frv.dk/SiteCollectionDocuments/pdf/K4_Validation_
wavemodels_WA-VEWATCH-III_Mike21-OSW_satellite_al-tlmetry_coastal_buoys.pdf].
[6] Mulligan, R. P., Bowen, A. J., Hay, A. E., vander Westhuysen, A. J. & Battjes J. A.(2008). Whitecapping and wave field evolution in acostal bay. Journal of Geophysical Research, Vol. 113, C03008, doi: 10.1029/2007JC004382.
[7] Instituto de Hidráulica Ambiental IH Cantabria. Instituto para la Diverslficaclón y Ahorro de la Energía. (2011). Evaluación del potencial de la energía de la solas. Estudio técnico PER2011-2020. Madrid.
[8] Agudelo, P., Restrepo, A., Molares, R., Torres, R. y Osorio, A. (2005). Determinación del clima de oleaje medio y extremal en el Caribe colombiano, Bol. Cient. CIOH No. 23. ISSN0120-0542. Pp. 33-45.
[9] Ortiz, J., Martínez, F., Díaz, E., Bacca, L. (2008). Estudio del oleaje generado por el huracán Joan en la costa Caribe colombiana en 1988, incluyendo a la Isla de San Andrés. Revista Colombiana de Física, Vol. 40, No. 2, julio 2008.
[10] Osorio, A. Mesa, J., Bernal, G., Montoya, R. (2009). Reconstrucción de cuarenta años de datos de oleaje en el mar Caribe Colombiano empleando el modelo WWIII TM y diferentes fuentes de datos. Boletín científico CIOH No. 27, ISSN0120-0542. Pp. 37-56.
[11] Thomas, Y., Nicolae, A., Durand, P., Posada, B., García, C. y Andrade, A.(2011). Altura Significativa del oleaje en la Cuenca colombiana del Caribe, datos de altimetría radar. Boletín científico CIOH No.29, ISSN0120-0542, 27-45. Pp.27-45.
[12] Ortega, S., Osorio, A., Agudelo, P. (2013). Estimation of the wave power resource in the Caribbean Sea in areas with scarce instrumentation. Casestudy: Isla Fuerte, Colombia. Renewable Energy 57 (2013).
[13] Willoughby, H. E. (2004). Parametric representation of the primary vortex. Part I: observations and evaluation of the Holland (1980) model. Monthly Weather Review. Pp. 3033-3048.
[14] Tolman, H.L. (1989). The numerical model for hindcasting of wind waves on tides in shelf seas. Technical Report 89-2. Faculty of civil engineering. Delft university of technology. ISSN0169-6548.
[15] World Meteorological Organization. (1998). Guide to wave analysis and for casting. Secretariat of the World Meteorological Organization-Geneva-Switzerland. ISBN92-63-12702-6. Pp.70-75.
[16] Bernal, G., Poveda, G., Roldán, P. y Andrade, C.(2006). Patrones de variabilidad de las temperaturas superficiales del mar en la costa Caribe colombiana. Rev. Acad. Colomb. Cienc., 30 (115): 195-208.
[17] Booij, N., Haagsma, I. J., Kieftenburg, A., Holthuijsen, L. (2000): SWAN Cycle III version 40. 11 Implementation Manual. Delft University of Technology. Chapter 6, 85.
[18] Komen, G., Hasselmann, S. & Hassel-mann, K. (1984). On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr.,14 (8),1271-1285.
[19] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W. &. Walden, H. (1973). Measurements of wind wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z. Suppl., 12, A8.
[20] Snyder, R. L., Dobson, F. W., Elliot, J. A. & Long, R. B.(1981). Array measurement of atmospheric, pressure fluctuations above surface gravity wave, J. Fluid Mech., 102, 1-59.
[21] Hasselmann, S., Hasselmann, K., Allen-der, J. H. &. Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for applications in wave models, Jnl. Physical Oceanography, 15, pp. 1378-1391.
[22] Eldeberky, Y. (1996). Nonlinear transformation of wave spectra in the nearshore zone, Ph. D thesis, Delft University of Technology, Departmentof Civil Engineering, The Netherlands.
[23] Hurdle, D. P. & van Vledder, G. Ph. (2004). Improved spectral wave modelling of white-capping dissipation in swell sea systems. Proc. 23 rd Int. Conf, on Offshore Mech. and Artic Eng.
[24] Collins, J. I. (1972). Predictions of shallows water spectra, J. Geophys. Res., 77, No. 15, 2693-2707.
[25] Méndez, F., Orfila A., Cañellas,T. (2007). Análisis y caracterización del clima marítimo en las Islas Baleares. Informe Final. Universidad de las Islas Baleares, Instituto Mediterráneo de Estudios Avanzados, Consejo Superior de Investigaciones científicas. Islas Baleares. Pp.8-11.
Downloads
Published
Issue
Section
License
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.