Satellite tracking of ocean-atmospheric conditions related to rainfall events in Colombia during La Niña event 2010-2011
DOI:
https://doi.org/10.26640/22159045.267Keywords:
La Niña 2010-2011, Colombia, GOES imagery, MODIS imagery, rainfall, sea surface temperatureAbstract
Understanding the climate variability is a topic of great scientific interest because it can affect the environmental and socio-economic conditions of a country. This work makes use of satellite data to assess the rainfall events that occurred in Colombia during La Niña 2010-2011 and recorded in the Caribbean coastal weather stations. Data from brightness temperature of clouds measured by the Geostationary Operational Envirormental Satellite (GOES -12), sea surface temperature (SST) data derived from monthly images of Moderate Resolution Imaging Spectroradiometer (MODIS) and in situ rainfall data, from two coastal weather stations (Cartagena and Santa Marta) was used. GOES images allowed describing La Niña event 2010-2011 due to the identification of high clouds and mesoscale convective complexes (MCC), which are related to high rainfall; meanwhile MODIS images showed an opposite oceanic behavior between the Colombian Caribbean, that exhibited positive anomalies and the Eastern Tropical Pacific, which experienced the influence of this event and reflected in negative anomalies. Linear models using SST satellite data, in situ rainfall and Southern Oscillation Index (SOI), revealed that only in the weather station located in Rodadero (Santa Marta), the rainfall was explained by SST in the adjacent sea; meanwhile the SOI was not.Downloads
References
[2] Poveda G, Mesa O, Salazar L, Arias P, Moreno H, Vieira S, Agudelo P, Toro V, Álvarez F. The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review 2004;133:228-240.
[3] Mesa O, Poveda G, Carvajal L. Introducción al clima de Colombia. Universidad Nacional de Colombia, Medellín; 1997. 390 pp.
[4] Trenberth KE, Caron JM. The Southern Oscillation Revisited: Sea level pressures, surface temperatures and precipitation. Journal of Climate 2000;13:4358-4365.
[5] Poveda G, Mesa OJ. Metodologías de predicción de la hidrología colombiana considerando el evento El Niño–Oscilación del Sur (ENOS). Sociedad Colombiana de Meterología. 1993;(17).
[6] Poveda G. The Relationship between ENSO and the hydrology of tropical South America: The case of Colombia. Proceedings of the Fifteenth Annual American Geophysical Union Hydrology Days. Atherton, USA. Hydrology Days Publications; 1995. Pp. 227-236.
[7] Restrepo JC, Ortiz JC, Pierini J, Schorottke K, Maza M, Otero L, Aguirre J. Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): Magnitude, variability and recent changes. Journal of Hydrology 2014;509: 266–281.
[8] Poveda G, Mesa O. Feedbacks between hydrological processes in tropical South America and large scale ocean–atmospheric phenomena. Journal of Climate 1997;10 (10):2690-2702.
[9] Poveda G, Jaramillo A. ENSO related variability of rivers discharges and soil moisture in Colombia. Biospherics Aspects of the Hydrologic Cycle. IGBP 2000;(8):3-6.
[10] Waylen P, Poveda G. El Niño Southern Oscillation and aspects of western South America hydro-climatology. Hydrological Processes 2002;16:1247-1260.
[11] Poveda G. La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias 2004;28(107):201-222.
[12] Mapes BE, Warner TT, Xu M, Negri AJ. Diurnal Patterns of Rainfall in Northwestern South America. Part I: Observations and Context. Monthly Weather Review. 2003;131:799-812.
[13] Maddox RA. Mesoscale convective complexes. Bulletin of American Meteorology Society. 1980;61:1374-1387.
[14] Quispe N. Mecanismos físicos para la formación de un complejo convectivo de mesoescala: Caso de estudio del 23 de abril de 2003. Revista del Aficionado a la Meteorología. 2003.
[15] Salinas CR. Análisis de un Sistema Convectivo de Mesoescala que Afectó el Paraguay el 3 de febrero del 2001. Top. Meteoro. Oceanog. 2001;8(2):60-70.
[16] NOAA/National Weather Service/Cimatic Prediction Center. 2011. ENSO Diagnostic Discussion. http:// http://www.cpc.ncep.noaa.gov/
[17] Instituto de Hidrología, Meteorología y Estudios Ambientales (Ideam). Boletín informativo Nº 16 sobre el monitoreo de los fenómenos El Niño y La Niña; 2010.
[18] Departamento Nacional de Planeación (DNP). Impactos y respuestas a la ola invernal 2010-2011; 2011. http:// https://www.dnp.gov.co/
[19] Hoyos N, Escobar J, Restrepo JC, Arango AM, Ortiz JC. Impact of the 2010-2011 La Niña phenomenon in Colombia, South America: The human toll of an extreme weather event. Applied Geography 2013;39:16-25.
[20] Bernal G, Poveda G, Roldán P, Andrade C. Patrones de variabilidad de las temperaturas superficiales del mar en la costa Caribe colombiana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 2006;30(115):195-208.
[21] Murtugudde RG, Signorini SR, Cristian JR, Busalacchi AJ, McClain CR, Picaut J. Ocean color variability of the tropical Indo-Pacific basin observed by SeaWIFS during 1997-1998. Journal of Geophysical Research 1999;104(C8):18351-18366.
[22] Murakami H, Ishizaka J, Kawamura H. ADEOS observations of chlorophyll a concentration, sea surface temperature, and wind stress change in the equatorial Pacific during the El Niño 1997 onset. Journal of Geophysical Research 2000;105(C8):19551-19559.
[23] Lagerloef SE, Lukas R, Bonjean F, Gunn JT, Mitchum GT, Bourassa M, Busalacchi AJ. El Niño Tropical Pacific Ocean surface current and temperature evolution in 2002 and outlook for early 2003. Geophysical Research Letters 2003;30(10):1514-1518.
[24] McCollum JA, Krajewski WF, Ferraro RR, Ba M. Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. Journal of Applied Meteorology 2002;41:1065-1080.
[25] Mecikalski JR, Bedka KM. Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery. Monthly Weather Review. 2006;134:49-78.
[26] Ba M, Frouin R, Nicholson S. Satellite derived interannual variability of west African rainfall during 1983-1988. Journal of Applied Meteorology 1995;34:411-431.
[27] Purdom JFW. Some uses of High-Resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Monthly Weather Review 1976;104:1474-1483.
[28] Griffith C, Lee Woodley W, Grube P, Martin D, Stout J, Sikdar D. Rain estimation from Geosynchronous Imagery-Visible and Infrared Studies. American Meteorology Society; 1978. Pp. 1153-1171.
[29] Gutiérrez-Moreno C, Marrugo M, Lozano-Rivera P, Sierra P, Andrade C. Clima Marino. En: Esteban Zarza-González (Ed.) El entorno ambiental del Parque Nacional Natural Corales del Rosario y de San Bernardo. Parques Nacionales Naturales de Colombia. Cartagena de Indias; 2011. 416 pp.
[30] McPhaden M. El Niño and La Niña: Causes and Global Consequences. Enciclopedia of Global Environmental Change Vol. 1; 2001. Pp. 353-370.
[31] Poveda G, Mesa O. La corriente de chorro superficial del Oeste (“Del Chocó”) y otras dos corrientes de chorro en Colombia: climatología y variabilidad durante las fases del ENSO. Revista de la Academia Colombiana de Ciencias 1999;23(89):517-528.
[32] Velasco I, Frisch M. Mesoscale convective complexes in the Americas. Journal of Geophysical Research 1987;92(D8):9591–9613.
[33] Mancera J, Pinto G, Vilardy S. Patrones de distribución estacional de masas de agua en la bahía de Santa Marta, Caribe colombiano: importancia relativa del upwelling y outwelling. Bol. de Invest. Mar. y Cost. 2013;42(2):329-360
[34] Andrade CA, Barton ED. The Guajira upwelling system. Cont. Shelf Res. 2005;25(9):1003–1022.
[35] Páramo J, Correa M, Núñez S. Evidencias de desacople físico-biológico en el sistema de surgencia en La Guajira, Caribe colombiano. Revista de Biología Marina y Oceanografía 2011;46(3):421–430.
Downloads
Published
Issue
Section
License
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.