Impact of fluvial hydraulic structures (jetties) on coastal dynamics. Case of study: Magdalena River mouth, Colombia.
DOI:
https://doi.org/10.26640/22159045.2025.652Keywords:
Coastal erosion River discharge Sediment transportAbstract
This study analyses coastal erosion processes in the Magdalena River delta, based on the analysis of satellite images and aerial photographs from the last 30 years. Evidence suggests that the construction of the Bocas de Ceniza jetties in 1935 has been a key factor in the coastal erosion processes to the west of the river. Using satellite images and nautical charts from the time, the evolution and changes in the coast of the Magdalena River delta, as well as its main coastal landforms (Mallorquín swamp, Isla Verde spit, and Puerto Velero spit), are documented.
The results show that between 1935 and 2022, to the east of the jetties, accretion has been limited (+387 ha) by the extension of the coastal structures, while erosion has affected an area further east (+1600 ha). To the west of the jetties, erosion has been even more pronounced (-3336 ha), causing a 24.6 km retreat of the coastline from the river mouth and the disappearance of Isla Verde. This change in the morphology of the coast and seabed allowed sedimentation and the formation of the Puerto Velero spit (+374 ha), which continues to grow, although erosion (-163 ha) is observed downdrift.
The application of Hsu’s parabolic equation indicates that the coastline of the Mallorquín Bar has reached a state of static equilibrium, suggesting nearly zero net sediment transport and a decrease in sediment supply to the west. This could increase the vulnerability of the Puerto Velero spit to erosion, as its growth still depends on sediment from the northeast. Thus, the stability of the Mallorquín Bar could affect the future evolution of this coastal spit.
Historical analysis also confirms the presence of dense mangrove ecosystems in the area before the channelling works at the Magdalena River mouth. However, this natural protection was insufficient to prevent the loss of 2,566 ha, suggesting that mangroves cease to provide effective coastal protection when their sediment retention capacity diminishes due to an interrupted sediment supply. In contrast, the formation and growth of the Puerto Velero spit were not hindered by the absence of these ecosystems, reaching an area of 374 ha with a growth rate of approximately 141 m/year. In conclusion, mangroves represent a nature-based solution for coastal protection that will only be effective if the sediment supply is restored.
This study analyses coastal erosion processes in the Magdalena River delta, based on the analysis of satellite images and aerial photographs from the last 30 years. Evidence suggests that the construction of the Bocas de Ceniza jetties in 1935 has been a key factor in the coastal erosion processes to the west of the river. Using satellite images and nautical charts from the time, the evolution and changes in the coast of the Magdalena River delta, as well as its main coastal landforms (Mallorquín swamp, Isla Verde spit, and Puerto Velero spit), are documented.
The results show that between 1935 and 2022, to the east of the jetties, accretion has been limited (+387 ha) by the extension of the coastal structures, while erosion has affected an area further east (+1600 ha). To the west of the jetties, erosion has been even more pronounced (-3336 ha), causing a 24.6 km retreat of the coastline from the river mouth and the disappearance of Isla Verde. This change in the morphology of the coast and seabed allowed sedimentation and the formation of the Puerto Velero spit (+374 ha), which continues to grow, although erosion (-163 ha) is observed downdrift.
The application of Hsu’s parabolic equation indicates that the coastline of the Mallorquín Bar has reached a state of static equilibrium, suggesting nearly zero net sediment transport and a decrease in sediment supply to the west. This could increase the vulnerability of the Puerto Velero spit to erosion, as its growth still depends on sediment from the northeast. Thus, the stability of the Mallorquín Bar could affect the future evolution of this coastal spit.
Historical analysis also confirms the presence of dense mangrove ecosystems in the area before the channelling works at the Magdalena River mouth. However, this natural protection was insufficient to prevent the loss of 2,566 ha, suggesting that mangroves cease to provide effective coastal protection when their sediment retention capacity diminishes due to an interrupted sediment supply. In contrast, the formation and growth of the Puerto Velero spit were not hindered by the absence of these ecosystems, reaching an area of 374 ha with a growth rate of approximately 141 m/year. In conclusion, mangroves represent a nature-based solution for coastal protection that will only be effective if the sediment supply is restored.
Downloads
References
Aiello, A., Canora, F., Pasquariello, G., & Spilotro, G. (2013). Shoreline variations and coastal dynamics: A space-time data analysis of the Jonian littoral, Italy. Estuarine, Coastal and Shelf Science, 129, 124–135. https://doi.org/10.1016/j.ecss.2013.06.012
Alvarado, M. (2005). Cartagena y el plan de restauración ambiental del canal del Dique, y Barranquilla y las obras de profundización del canal navegable de acceso a la zona portuaria: Visión general. In Juan D. Restrepo (Ed.), Los sedimentos del rio Magdalena: Reflejo de la crisis ambiental (1st ed., pp. 217–254). EAFIT.
Beck, T. M., & Wang, P. (2019). Morphodynamics of barrier-inlet systems in the context of regional sediment management, with case studies from west-central Florida, USA. Ocean & Coastal Management, 177, 31–51. https://doi.org/10.1016/J.OCECOAMAN.2019.04.022
Bianchini, A., Cento, F., Guzzini, A., Pellegrini, M., & Saccani, C. (2019). Sediment management in coastal infrastructures: Techno-economic and environmental impact assessment of alternative technologies to dredging. Journal of Environmental Management, 248, 109332. https://doi.org/10.1016/J.JENVMAN.2019.109332
Bianciardi, A., Becattini, N., & Cascini, G. (2023). How would nature design and implement nature-based solutions? Nature-Based Solutions, 3, 100047. https://doi.org/10.1016/J.NBSJ.2022.100047
Boak, E. H., & Turner, I. L. (2005). Shoreline definition and detection: A review. In Journal of Coastal Research (Vol. 21, Issue 4, pp. 688–703). https://doi.org/10.2112/03-0071.1
Bombino, G., Barbaro, G., D’Agostino, D., Denisi, P., Foti, G., Labate, A., & Zimbone, S. M. (2022). Shoreline change and coastal erosion: The role of check dams. First indications from a case study in Calabria, southern Italy. Catena, 217. https://doi.org/10.1016/j.catena.2022.106494
Boswood, P. K., & Murray, R. J. (2001). World-wide sand bypassing systems: data report (Compiled 1997). www.env.qld.gov.au
Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., … Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. (P. Arias, M. Bustamante, I. Elgizouli, G. Flato, M. Howden, C. Méndez-Vallejo, J. J. Pereira, R. Pichs-Madruga, S. K. Rose, Y. Saheb, R. Sánchez Rodríguez, D. Ürge-Vorsatz, C. Xiao, N. Yassaa, J. Romero, J. Kim, E. F. Haites, Y. Jung, R. Stavins, … C. Péan, Eds.). https://doi.org/10.59327/IPCC/AR6-9789291691647
Coelho, C., Silva, R., Veloso-Gomes, F., & Rodrigues, L. (2011). Artificial Nourishment and sand by passing in the Aveiro inlet, Portugal - Numerical studies. Coastal Engineering Proceedings, 32, 99. https://doi.org/10.9753/icce.v32.sediment.99
Cooke, B. C., Jones, A. R., Goodwin, I. D., & Bishop, M. J. (2012). Nourishment practices on Australian sandy beaches: A review. In Journal of Environmental Management (Vol. 113, pp. 319–327). Academic Press. https://doi.org/10.1016/j.jenvman.2012.09.025
Correa, I. D., Alcántara-Carrió, J., & González, D. A. (2005). Historical and Recent Shore Erosion along the Colombian Caribbean Coast. Journal of Coastal Research, 49, 52–57.
De Battisti, D. (2021). The resilience of coastal ecosystems: A functional trait‐based perspective. Journal of Ecology, 109. https://doi.org/10.1111/1365-2745.13641
Ercilla, G., Alonso, B., Estrada, F., Chiocci, F. L., Baraza, J., & Farran, M. L. (2002). The Magdalena Turbidite System (Caribbean Sea): present-day morphology and architecture model. Marine Geology, 185(3–4), 303–318. https://doi.org/10.1016/S0025-3227(02)00182-2
Franzen, M. O., Silva, P., Siegle, E., & Fernandes, E. H. L. (2023). Influence of long jetties on estuarine and coastal hydrodynamics in a microtidal estuary. Regional Studies in Marine Science, 59. https://doi.org/10.1016/j.rsma.2022.102809
Galgano, F. A. (2009). Middle States Geographer (Vol. 42).
Garel, E., Sousa, C., & Ferreira, Ó. (2015). Sand bypass and updrift beach evolution after jetty construction at an ebb-tidal delta Author personal copy. Estuarine, Coastal and Shelf Science, 167, 4–13. https://doi.org/https://doi.org/10.1016/j.ecss.2015.05.044
Higgins, A., Restrepo, J. C., Ortiz, J. C., Pierini, J., & Otero, L. (2016). Suspended sediment transport in the Magdalena River (Colombia, South America): Hydrologic regime, rating parameters and effective discharge variability. International Journal of Sediment Research, 31(1), 25–35. https://doi.org/10.1016/J.IJSRC.2015.04.003
HSU, J. R. C., & EVANS, C. (1989). PARABOLIC BAY SHAPES AND APPLICATIONS. Proceedings of the Institution of Civil Engineers, 87(4), 557–570. https://doi.org/10.1680/iicep.1989.3778
Keshtpoor, M., Puleo, J. A., Gebert, J., & Plant, N. G. (2013). Beach response to a fixed sand bypassing system. Coastal Engineering, 73, 28–42. https://doi.org/10.1016/j.coastaleng.2012.09.006
Kolla, V., & Buffler, R. T. (1983). Morphologic, acoustic, and sedimentologic characteristics of the Magdalena Fan. Geo-Marine Letters, 3(2), 85–91. https://doi.org/10.1007/BF02462452
Komar, P. D. (1996). Tidal-Inlet Processes and Morphology Related to the Transport of Sediments. Journal of Coastal Research, 23–45. http://www.jstor.org/stable/25736067
Koopmans, B. N. (1971). Interpretación de fotografías áreas en morfología costera : relacionada con proyectos de ingeniería (1st ed.). Centro Interamericano de Fotointerpretación.
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The State of the World’s Beaches. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-24630-6
MADS. (2013). Decreto 1120 del 2013. Por el cual se reglamentas las Unidades Ambientales. (1120; p. 10).
Martinez, J. O., Pilkey, O. H., & Neal, W. J. (1990). Rapid formation of large coastal sand bodies after emplacement of Magdalena river jetties, northern Colombia. Environmental Geology and Water Sciences, 16(3), 187–194. https://doi.org/10.1007/BF01706043
Molares, R. J. (2004). Clasificación e identificación de las componentes de marea del Caribe colombiano. Boletín Científico CIOH, 22, 105–114. https://doi.org/https://doi.org/10.26640/22159045.132
Molina, A., Molina, C., Thomas, Y. F., & Molina, L. E. (2001). Comportamiento de la línea de Costa del Caribe Colombiano ( Sector entre Barranquilla, desde Bocas de Ceniza hasta laFlecha de Galerazamba 1935-1996 ). Boletin Cientifico CIOH, 19, 68–79. https://doi.org/https://doi.org/10.26640/01200542.19.68_79
Moreira, S., Freitas, M. da C., Andrade, C., & Bertin, X. (2019). Processes controlling morphodynamics of artificially breached barriers. Estuarine, Coastal and Shelf Science, 225, 106231. https://doi.org/10.1016/J.ECSS.2019.05.013
Nassar, K., Mahmod, W. E., Masria, A., Fath, H., & Nadaoka, K. (2018). Numerical simulation of shoreline responses in the vicinity of the western artificial inlet of the Bardawil Lagoon, Sinai Peninsula, Egypt. Applied Ocean Research, 74, 87–101. https://doi.org/10.1016/J.APOR.2018.02.015
Nuñez, H. (2004, December). La desaparición de Isla Verde. Un desastre ecológico del siglo XX en el Caribe colombiano. Huellas - Universidad Del Norte, 60, 27–33.
Orejarena, A., Afanador, F., Ramos, I., Conde, M., & Restrepo, J. (2015). Evolución morfológica de la espiga de Galerazamba, Caribe colombiano Galerazamba Spit morphological evolution, Colombian Caribbean. Bol. Cient. CIOH, 33, 123–144. https://doi.org/https://doi.org/10.26640/01200542.19.68_79
Posada Posada, B. O., & Henao Pineda, W. (2008). Diagnóstico de la erosión en la zona costera del Caribe colombiano. Instituto de Investigaciones Marinas y Costeras - INVEMAR. http://hdl.handle.net/1834/6682
Restrepo, J. C. (2014). “Dinámica Sedimentaria en Deltas Micromareales-Estratificados de Alta Descarga: Delta del Rio Magdalena (Colombia-Mar Caribe)” Asesores. Universidad del Norte.
Restrepo, J. C., Schrottke, K., Traini, C., Ortíz, J. C., Orejarena, A., Otero, L., Higgins, A., & Marriaga, L. (2016). Sediment transport and geomorphological change in a high-discharge tropical delta (Magdalena River, Colombia): Insights from a period of intense change and human intervention (1990-2010). Journal of Coastal Research, 32(3), 575–589. https://doi.org/10.2112/JCOASTRES-D-14-00263.1
Restrepo, J. D., & Kjerfve, B. (2000). Magdalena river: Interannual variability (1975-1995) and revised water discharge and sediment load estimates. Journal of Hydrology, 235(1–2), 137–149. https://doi.org/10.1016/S0022-1694(00)00269-9
Ricaurte-Villota, C., Coca-Domínguez, O., González, M. E., Bejarano-Espinosa, M., Morales, D. F., Correa-Rojas, C., Briceño-Zuluaga, F., Legarda, G. A., & Arteaga, M. E. (2018). Amenaza y vulnerabilidad por erosión costera en Colombia: enfoque regional para la gestión del riesgo.
Rijn, L. (2005). Principles of Sedimentation and Erosion Engineering in Rivers, Estuaries and Coastal Seas (pp. 0–600). Aqua Publications.
Rijn, L. (2016, May 15). Note: Harbour siltation and control measures. www.leovanrijn-sediment.com;
Rivillas-Ospina, G. D., Ruiz-Martinez, G., Silva, R., Mendoza, E., Pacheco, C., Acuña, G., Rueda, J., Felix, A., Pérez, J., & Pinilla, C. (2017). Physical and morphological changes to wetlands induced by coastal structures. In Coastal Research Library (Vol. 21, pp. 275–315). Springer. https://doi.org/10.1007/978-3-319-56179-0_9
Romero-Otero, G. A., Slatt, R. M., & Pirmez, C. (2015). Evolution of the Magdalena deepwater fan in a tectonically active setting, offshore Colombia. In AAPG Memoir (Vol. 108, pp. 675–707). American Association of Petroleum Geologists. https://doi.org/10.1306/13531953M1083656
Silvester, R., & Hsu, J. R. C. (1993). Coastal stabilization: Innovative concepts: Richard Silvester and John R.C. Hsu. Prentice Hall, Englewood Cliffs, N.J., 1992, xiv + 578 pp. (hardcover) ISBN 0-13-14310-9. Sedimentary Geology, 88(1–2), 153–154. https://doi.org/10.1016/0037-0738(93)90155-X
Vernette, G., Mauffret, A., Bobier, C., Briceno, L., & Gayet, J. (1992). Mud diapirism, fan sedimentation and strike-slip faulting, Caribbean Colombian Margin. Tectonophysics, 202(2–4), 335–349. https://doi.org/10.1016/0040-1951(92)90118-P
Villate, D. A., Portz, L., Manzolli, R. P., & Alcántara-Carrió, J. (2020). Human Disturbances of Shoreline Morphodynamics and Dune Ecosystem at the Puerto Velero Spit (Colombian Caribbean). Journal of Coastal Research, 95(sp1), 711–716. https://doi.org/10.2112/SI95-138.1
Wang, Y. H., Wang, Y. H., Deng, A. J., Feng, H. C., Wang, D. W., & Guo, C. S. (2022). Emerging Downdrift Erosion by Twin Long-Range Jetties on an Open Mesotidal Muddy Coast, China. Journal of Marine Science and Engineering, 10(5). https://doi.org/10.3390/jmse10050570
Published
Issue
Section
License
Copyright (c) 2025 CIOH Scientific Bulletin

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.