MULTI-TEMPORAL BEHAVIOR OF THE TROPHIC COMPOSITION OF COMMERCIAL FISH IN THE COLOMBIAN CARIBBEAN COAST

Authors

DOI:

https://doi.org/10.26640/22159045.2026.660

Keywords:

Trophic composition, artisanal fishing, food webs, sustainable fishery management

Abstract

The Colombian Caribbean is a region of high ecological and fishing importance, where extractive activities face challenges such as overexploitation and environmental degradation. For this reason, the multi-temporal variation in the trophic composition of commercially caught fish between 2009 and 2020 was analyzed to identify trends and propose strategies for the sustainable management of fishery resources. To achieve this, data from the Colombian Fisheries Statistical Service (SEPEC) from 17 ports along the Caribbean coast were used, applying descriptive statistical analyses and the non-parametric Kruskal-Wallis test to evaluate changes in the trophic level of catches. Of the total recorded fish, the families Carangidae, Sciaenidae, Haemulidae, Serranidae, Lutjanidae, and Scombridae accounted for 40% of the total catch. It was found that 64% of the species were mesopredator carnivores (trophic levels 3.1–4.0), 25% were top predators (4.1–4.6), and 11% were herbivores and zooplanktivores (2.0–3.0). An 8% reduction in the average trophic level of catches was observed, indicating a process of "fishing down the food web." Furthermore, since 2012, 7% of the families were classified as vulnerable, and since 2015, 1% were listed as critically endangered. The fishery resources of the Colombian Caribbean coast have undergone alterations in the ecosystem's trophic structure, likely due to the intensive extraction of higher-level predators and environmental pressure. Therefore, it is recommended to implement sustainable fishery management strategies, including biological bans, continuous monitoring of catches, and the promotion of selective practices to preserve biodiversity and ensure the stability of fisheries in the region.

Downloads

Download data is not yet available.

References

Afonso, P., Fontes, J., Holland, K. N., & Santos, R. S. (2008). Social status determines behaviour and habitat usage in a temperate parrotfish: implications for marine reserve design. Marine Ecology Progress Series, 357, 215–227.

Anderson, D. M., Cembella, A. D., & Hallegraeff, G. M. (2018). Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science,

10, 321–348.

Andrade, C. A., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research: Oceans, 105(C11), 26191–26201. https://doi.org/10.1029/2000JC900107

AUNAP. (2013). Boletín Estadístico enero-diciembre de 2013. Autoridad Nacional de Acuicultura y Pesca (AUNAP).

AUNAP. (2014a). Boletín Estadístico enero – junio de 2014. Autoridad Nacional de Acuicultura y Pesca (AUNAP).

AUNAP. (2014b). Boletín Estadístico noviembre –diciembre de 2014. Autoridad Nacional de Acuicultura y Pesca (AUNAP).

AUNAP-UNIMAGDALENA. (2014). Caracterización de los principales artes de pesca de Colombia y reporte del consolidado del tipo y número de artes, embarcaciones y uep’s empleadas por los pescadores vinculados a la actividad pesquera. Contrato de Prestación de Servicios No. 190, suscrito entre la Autoridad Nacional de Acuicultura y Pesca y la Universidad del Magdalena.

Bakun, A., & Broad, K. (2003). Environmental ‘loopholes’ and fish population dynamics: comparative pattern recognition with focus on El Niño effects in the Pacific. Fisheries Oceanography, 12(4-5), 458–473. https://doi.org/10.1046/j.1365-2419.2003.00258.x

Barreto, C., Mena, B., Palacio, D., Valderrama, M., & Mojica, H. (2014). Evaluación pesquera y dinámica de los recursos pesqueros del golfo de Urabá, Caribe sur colombiano. Avances de acuicultura y pesca, 4.

Barreto, C., Mena, B., Palacio, D., Valderrama, M., & Mojica, H. (2022). Documento Técnico Base Para el Establecimiento de Cuotas Globales de Pesca para la Vigencia 2022. Autoridad Nacional de Acuicultura y Pesca (AUNAP).

Barnes, B., & Sidhu, H. (2013). The impact of marine closed areas on fishing yield under a variety of management strategies and stock depletion levels. Ecological Modelling, 269, 113–125. https://doi.org/10.1016/j.ecolmodel.2013.08.012

Bazigos, G. P. (1974). The design of fisheries statistical surveys-inland waters (FAO Fisheries Technical Paper No. 133). Food and Agriculture Organization of the United Nations.

Bernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). Patrones de variabilidad de las temperaturas superficiales del mar en la Costa Caribe colombiana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 30(115), 195–208.

Bianchi, D., Carozza, D. A., Galbraith, E. D., Guiet, J., & DeVries, T. (2021). Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. Science Advances, 7(41), eabd7554. https://doi.org/10.1126/sciadv.abd7554

Bland, L., Keith, D., Miller, R., Murray, N., & Rodríguez, J. (2017). Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria (Version 1.1). IUCN. https://doi.org/10.2305/IUCN.CH.2016.RLE.3.en

Blanco, J. A. (1988). Las variaciones ambientales estacionales en las aguas costeras y su importancia para la pesca en la región de Santa Marta, Caribe Colombiano [Tesis de maestría, Universidad Nacional de Colombia].

Blas, C. (2018). Ecomorfología alimentaria de tres especies de carángidos Caranx hippos, Caranx crysos y Trachinotus falcatus (CARANGIFORMES: CARANGIDAE), de la localidad de Barrancas, Veracruz [Tesis de licenciatura, Universidad Nacional Autónoma de México].

Broadley, A., Stewart-Koster, B., Burford, M. A., & Brown, C. J. (2022). A global review of the critical link between river flows and productivity in marine fisheries. Reviews in Fish Biology and Fisheries, 32(3), 805–825. https://doi.org/10.1007/s11160-022-09711-0

Carstensen, J., Andersen, J. H., Gustafsson, B. G., & Conley, D. J. (2014). Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences, 111(15), 5628–5633. https://doi.org/10.1073/pnas.1323156111

Chavez, F. P., Ryan, J., Lluch-Cota, S. E., & Ñiquen, M. (2003). From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science, 299(5604), 217–221. https://doi.org/10.1126/science.1075880

Claro, R., Lindeman, K. C., & Parenti, L. R. (Eds.). (2001). Ecology of the marine fishes of Cuba. Smithsonian Institution Press.

Correa-Herrera, T., & Jiménez-Segura, L. F. (2013). Biología reproductiva de Lutjanus guttatus (Perciformes: Lutjanidae) en el Parque Nacional Natural Utría, Pacífico colombiano. Revista de Biología Tropical, 61(2), 829–840. https://doi.org/10.15517/rbt.v61i2.11262

Cowen, R. K., Paris, C. B., & Srinivasan, A. (2006). Scaling of connectivity in marine populations. Science, 311(5760), 522–527. https://doi.org/10.1126/science.1122039

DANE. (2020). Boletín Técnico Producto Interno Bruto (PIB) IV Trimestre de 2019. Departamento Administrativo Nacional de Estadística. https://www.dane.gov.co/files/investigaciones/boletines/pib/bol_PIB_IVtrim19_producion_y_gasto.pdf

De la Hoz M., J., Narváez, J. C., Manjarrés-Martínez, L., Nieto A., L., Rivera, R., Cuello, F., & Álvarez, T. (2012). Reporte de la actividad pesquera Industrial y artesanal Continental y Marina de Colombia. Autoridad Nacional de Acuicultura y Pesca (AUNAP).

De la Hoz M., J., Manjarrés-Martínez, L., Cuello, F., & Nieto, L. (2015). Estadísticas de captura y esfuerzo de las pesquerías artesanales e industriales de Colombia en los sitios y puertos monitoreados por el SEPEC durante el año 2015. Autoridad Nacional de Acuicultura y Pesca (AUNAP).

De la Hoz-M., J., & Manjarrés–Martínez, L. (2016). Estadísticas de desembarco y esfuerzo de las pesquerías artesanales e industriales de Colombia en los sitios y puertos pesqueros monitoreados por el SEPEC durante el período julio a diciembre de 2016. Autoridad Nacional de Acuicultura y Pesca (AUNAP).

De la Hoz-M., J., Duarte, L. O., & Manjarrés–Martínez, L. (2017). Estadísticas de desembarco y esfuerzo de las pesquerías artesanales e industriales de Colombia entre marzo y diciembre de 2017 (Informe técnico). Autoridad Nacional de Acuicultura y Pesca (AUNAP); Universidad del Magdalena.

De Turris, K., Hernández, S., Lizcano, R., Barrera, A., Pacheco, R., Coronado, V., & Gallardo, N. (2017). Caracterización actual de la pesca industrial de arrastre en el golfo de Morrosquillo, Caribe colombiano. Avances de acuicultura y pesca en Colombia, 4.

Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926–929. https://doi.org/10.1126/science.1156401

Ding, Q., Chen, X., Yu, W., & Chen, Y. (2017). An assessment of" fishing down marine food webs" in coastal states during 1950-2010. Acta Oceanologica Sinica, 36(2), 43–51. https://doi.org/10.1007/s13131-017-0999-x

Duarte, L., De la Hoz M., & Manjarrés–Martínez, L. (2018). Análisis de los desembarcos pesqueros artesanales registrados en las cuencas y litorales de Colombia (julio-diciembre de 2018). Autoridad Nacional de Acuicultura y Pesca (AUNAP).

Dutta, S., Paul, S., & Homechaudhuri, S. (2023). Food web structure and trophic interactions of the Northern Bay of Bengal ecosystem. Regional Studies in Marine Science, 61, 102861. https://doi.org/10.1016/j.rsma.2023.102861

Eriksen, E., Skjoldal, H. R., Dolgov, A. V., Strand, E., Keulder-Stenevik, F., Prokopchuk, I. P., & Benzik, A. N. (2021). Diet and trophic structure of fishes in the Barents Sea: Seasonal and spatial variations. Progress in Oceanography, 197, 102663. https://doi.org/10.1016/j.pocean.2021.102663

Esbaugh, A. J. (2018). Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. Journal of Comparative Physiology B, 188(1), 1–13. https://doi.org/10.1007/s00360-017-1105-6

FAO. (1982). La recolección de estadísticas de captura y esfuerzo (FAO Circular de Pesca No. 739). Food and Agriculture Organization of the United Nations.

FAO. (1985). Guidelines for statistical monitoring (FAO Fisheries Technical Paper No. 257). Food and Agriculture Organization of the United Nations.

Franco-Herrera, A. (2005). Oceanografía de la ensenada de Gaira. El Rodadero, más que un centro turístico en el Caribe colombiano. Universidad de Bogotá Jorge Tadeo Lozano.

Free, C. M., Thorson, J. T., Pinsky, M. L., Oken, K. L., Wiedenmann, J., & Jensen, O. P. (2019). Impacts of historical warming on marine fisheries production. Science, 363(6430), 979–983. https://doi.org/10.1126/science.aau1758

Froese, R., & Pauly, D. (2024). Taking stock of global fisheries. Science, 385(6711), 824-825.

García, C., & Contreras, C. (2011). Trophic levels of fish species of commercial importance in the Colombian Caribbean. Revista de Biología Tropical, 59(3), 1195–1203. https://doi.org/10.15517/rbt.v59i3.3423

Gordon, A. L. (1967). Circulation of the Caribbean Sea. Journal of Geophysical Research, 72(24), 6207–6223. https://doi.org/10.1029/JZ072i024p06207

Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D., & Wilson, S. K. (2017). Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature, 548(7666), 413–416. https://doi.org/10.1038/nature23280

Grimes, C. B. (1987). Reproductive biology of the Lutjanidae: a review. In J. J. Polovina & S. Ralston (Eds.), Tropical snappers and groupers: biology and fisheries management (pp. 239–294). Westview Press.

Hu, N., Bourdeau, P. E., Harlos, C., Liu, Y., & Hollander, J. (2022). Meta-analysis reveals variance in tolerance to climate change across marine trophic levels. Science of the Total Environment, 854, 158744. https://doi.org/10.1016/j.scitotenv.2022.158744

IDEAM. (2009). Pronóstico de pleamares y bajamares costa Caribe colombiana. Servicio Mareográfico, Instituto de Hidrología, Meteorología y Estudios Ambientales.

Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A., & Campbell, L. M. (2013). Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environmental Science & Technology, 47(23), 13385–13394. https://doi.org/10.1021/es403103t

Logan, J. M., Rodríguez-Marín, E., Goni, N., Barreiro, S., & Arrizabalaga, H. (2015). Diet of juvenile Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Marine Biology, 162(2), 341–358. https://doi.org/10.1007/s00227-014-2586-4

Macusi, E. D., Liguez, C. G. O., Macusi, E. S., Liguez, A. K. O., & Digal, L. N. (2022). Factors that influence small-scale Fishers’ readiness to exit a declining fishery in Davao Gulf, Philippines. Ocean & Coastal Management, 230, 106378. https://doi.org/10.1016/j.ocecoaman.2022.106378

Mumby, P. J., Dahlgren, C. P., Harborne, A. R., Kappel, C. V., Micheli, F., Brumbaugh, D. R., & Gill, A. B. (2006). Fishing, trophic cascades, and the process of grazing on coral reefs. Science, 311(5757), 98–101. https://doi.org/10.1126/science.1121129

Nagelkerken, I., van der Velde, G., Gorissen, M. W., Meijer, G. J., Van't Hof, T., & den Hartog, C. (2000). Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuarine, Coastal and Shelf Science, 51(1), 31–44. https://doi.org/10.1006/ecss.2000.0617

Narváez B., J. C., Rueda, M., Viloria M., E. A., Blanco R., J. A., Romero, J. A., & Newmark, F. (2005). Manual del sistema de información pesquera del INVEMAR: una herramienta para el diseño de sistemas de manejo pesquero (Serie de documentos generales del INVEMAR No. 18). Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andréis.

Navarro Rodríguez, M. del C., Hernández Vázquez, S., Funes Rodríguez, R., & Flores Vargas, R. (2012). Distribución y abundancia de larvas de peces de las familias Haemulidae, Sciaenidae y Carangidae de la plataforma continental de Jalisco y Colima, México. Boletín Del Centro De Investigaciones Biológicas, 35(1). https://produccioncientificaluz.org/index.php/boletin/article/view/204

Newton, A., Carruthers, T. J., & Icely, J. (2012). The coastal syndromes and hotspots on the coast. Estuarine, Coastal and Shelf Science, 96, 39–47. https://doi.org/10.1016/j.ecss.2011.07.012

Nystuen, J. A., & Andrade, C. A. (1993). Tracking mesoscale ocean features in the Caribbean Sea using geosat altimetry. Journal of Geophysical Research: Oceans, 98(C5), 8389–8394. https://doi.org/10.1029/93JC00381

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres Jr, F. (1998). Fishing down marine food webs. Science, 279(5352), 860-863.

Pelage, L., Bertrand, A., Siqueira, S. C. W., Araújo, A. C. A. P., Avelino, K. V. A., da Silva, C. L., & Frédou, T. (2023). Fishers’ perceptions of global change to inform coastal planning in a data-poor socio-ecological system. Marine Policy, 155, 105784. https://doi.org/10.1016/j.marpol.2023.105784

Puga, R., de León, M. E., & Claro, R. (2013). Variabilidad climática y su impacto en la pesquería de langosta espinosa en el Caribe. Revista de Investigaciones Marinas, 34(2), 135–148.

Rabalais, N. N., Turner, R. E., Díaz, R. J., & Justić, D. (2010). Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 67(7), 1528–1537. https://doi.org/10.1093/icesjms/fsq047

R Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/

Restrepo, J. D., Escobar, G., & Correa, H. (2020). Heavy metal contamination in coastal marine sediments and fish from the Cartagena Bay, Colombia. Marine Pollution Bulletin, 161(Pt B), 111744. https://doi.org/10.1016/j.marpolbul.2020.111744

Ricaurte-Villota, C., & Bastidas Salamanca, M. L. (Eds.). (2017). Regionalización oceanográfica: una visión dinámica del Caribe (Serie de Publicaciones Especiales de INVEMAR No. 14). Instituto de Investigaciones Marinas y Costeras José Benito Vives De Andréis (INVEMAR).

Rivas Mina, M. (2023). Cambio climático y pesca, relación insostenible. Una mirada hacia la gobernanza climática para la sostenibilidad pesquera en Latinoamérica. InterNaciones, 10(24), 121–137. https://doi.org/10.32870/in.vi24.7238

Rodríguez Burgos, A. M., & Briceño Zuluaga, F. (2023). Factores oceanográficos como moduladores de la biodiversidad en el sistema de surgencia de La Guajira: una revisión sistemática. Boletín Científico CIOH, 42(2), 59–70. https://doi.org/10.26640/22159045.2023.621

Salzwedel, H., & Müller, K. (1983). A summary of meteorological data for the bay of Santa Marta, Colombian Caribbean. Anales del Instituto de Investigaciones Marinas de Punta Betín, 13, 67–84.

Santamaría-del-Ángel, E., Millán-Núñez, R., & Cajal Medrano, R. (1992). Efecto de la energía cinética turbulenta sobre la distribución espacial de la clorofila-a en una pequeña laguna costera. Ciencias Marinas, 18(4), 1–16. https://doi.org/10.7773/cm.v18i4.920

Scharf, F. S., Juanes, F., & Rountree, R. A. (2000). Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic niche breadth. Marine Ecology Progress Series, 208, 229–248. https://doi.org/10.3354/meps208229

Stamatopoulos, C. (2002). Sample-based fishery surveys: A technical handbook (FAO Fisheries Technical Paper No. 425). Food and Agriculture Organization of the United Nations.

Talisma, K., Al-Emran, M., Rahman, M., Hasan, J., Ferdous, Z., Rohani, M., & Shahjahan, M. (2022). Impacts of heavy metals on early development, growth and reproduction of fish–A review. Toxicology Reports, 9, 858–868. https://doi.org/10.1016/j.toxrep.2022.04.013

Wang, L., Wang, B., Cen, W., Xu, R., Huang, Y., Zhang, X., & Zhang, Y. (2023). Ecological impacts of the expansion of offshore wind farms on trophic level species of marine food chain. Journal of Environmental Sciences, 134, 1–12. https://doi.org/10.1016/j.jes.2022.12.013

Wang, X., Sato, T., Xing, B., & Tao, S. (2017). Health risks of heavy metals to the general public in China via consumption of vegetables. Environment International, 101, 387–395.

Wu, X. T., Ding, X. X., Jiang, X., Xu, B. D., Zhang, C. L., Ren, Y. P., & Xue, Y. (2019). Variations in the mean trophic level and large fish index of fish community in Haizhou Bay, China. Ying Yong Sheng Tai Xue Bao, 30(8), 2829–2836. https://doi.org/10.13287/j.1001-9332.201908.033

Wüst, G. (1964). Stratification and circulation in the Antillean-Caribbean basins. Columbia University Press.

Xu, Y., Huo, X., He, S., Huang, F., Cai, Y., & Peng, J. (2023). Ecological network-based food web dynamic model provides an aquatic population restoration strategy. Ecological Indicators, 154, 110735. https://doi.org/10.1016/j.ecolind.2023.110735

Yang, T.-Y., Chiang, T.-F., & Liu, W.-H. (2022). Small-scale fishers’ catch production in Taiwanese coastal areas. Marine Policy, 143, 105182. https://doi.org/10.1016/j.marpol.2022.105182

Zhang, Y., Zhang, C., Xu, B., Ji, Y., Ren, Y., & Xue, Y. (2022). Impacts of trophic interactions on the prediction of spatio-temporal distribution of mid-trophic level fishes. Ecological Indicators, 138, 108826. https://doi.org/10.1016/j.ecolind.2022.108826

Published

2025-12-02

Issue

Section

RESEARCH ARTICLE

How to Cite

MULTI-TEMPORAL BEHAVIOR OF THE TROPHIC COMPOSITION OF COMMERCIAL FISH IN THE COLOMBIAN CARIBBEAN COAST. (2025). CIOH Scientific Bulletin. https://doi.org/10.26640/22159045.2026.660

Similar Articles

1-10 of 19

You may also start an advanced similarity search for this article.