The influence of the Dique Channel discharge on the sea water level of Cartagena Bay-Colombia
DOI:
https://doi.org/10.26640/22159045.240Keywords:
Dique Channel, Cartagena Bay, water level, flooding, La Niña eventAbstract
Increasingly flooding events, unrelated to storm surges, are frequent in Cartagena de Indias, Colombia, during October- November. This situation is jeopardizing large economical investments in touristic infrastructure around the bay, in a city in which the main economical activity is related to the tourism and maritime activities. The flooding events could be related to the freshwater discharge into Cartagena Bay from the Dique Channel, since the sea water level in the bay shows a yearly fluctuation similar to that of the Dique Channel flow rate, which is related to precipitation. The Regional Ocean Modelling System (ROMS_AGRIF) is applied in arder to determine the effects of the Dique Channel discharge on Cartagena Bay's water levet, comparing high precipitation years (1988 - La Niña event) with regular precipitation years (1990). The results show a water level anomaly at the north-east coast of the bay of about +2 cm during the rainy season for average precipitations years, but increased (+3 cm) during high precipitation year. Considering an extreme scenario and assuming higher flow rate discharge of the Dique Channel than the presented during extreme discharges years (La Niña), suggest not to produce high impacts on the Cartagena Bay water level. Considering the sea level rise for Cartagena de Indias reported by various authors, between 4,5 - 5,98 mm/yr, decisions have to be made to protect the city from flooding. The results presented here reveal that, although the management and control of the Dique Channel discharge during the rainy season could lead to a small reduction in the water level at the north-eastern coast of the bay, this measure does not represent a particularly important advance and long-term solution.Downloads
References
[2] Huang JCK. Climate change and integrated coastal management: a challenge for small island nations. Ocean and Coastal Management. 1997; 37: 95-107.
[3] Snoussi M., Ouchani T., Niazi S. Vulnerability assessment of the impact of sea level rise and flooding on the Moroccan coast: the case of the Mediterranean eastern zone. Estuarine, Coastal and Shelf Science. 2008; 77: 206-213.
[4] Jiménez J., Sánchez-Arcilla A. Physical impacts of climatic change on deltaic coastal systems (II): driving terms. Climatic Change. 1997; 35: 95-118.
[5] IPCC. Climate Change 2007: Synthesis Report. Adopted at the International Panel of Climate Change Plenary XXVII (Valen-cia, Spain, 12 – 17 November 2007).
[6] Burkett VR., Zilkoski DB., Hart DA. Sea-level rise and subsidence: implications for flooding in New Orleans, Louisiana. 2003. In: Prince, K.R., Galloway, D.L. (Eds.), U.S.Geological Survey Subsidence Interest Group Conference, Proceeding of the Technical Meeting, November 27–29, 2001,Galveston, Texas, pp. 63–70.
[7] González JL., Tornqvist TE. Coastal Louisiana in crisis: Subsidence or sea level rise?, Eos Trans. AGU. 2006; 87(45), 493, doi:10.1029/2006EO450001.
[8] Mazzotti S., Lambert A., Van der Kooij M., Mainville A. Impact of anthropogenic subsidence on relative sea-level rise in the Fraser River delta. Geology. 2009; 37: 771-774, doi:10.1130/G25640A.1
[9] Hoyme H, Zielke W. Impact of climatic changes on wind behaviour and water levels at the German North Sea coast. Estuarine, Coastal and Shelf Science 2001; 53:451-458.
[10] Pryor SC., Barthelmie RJ. Climate change impacts on wind energy: a review. Renewable and Sustainable Energy Review. 2010; 14: 430-437.
[11] Lionello P., Cogo S., Galati MB., Sanna A. The Mediterranean surface wave climate inferred from future scenario simulations. Global and Planetary Change. 2008; 63: 152-162.
[12] Mösso C., Mestres M., Sierra JP., Sánchez-Arcilla A., Goodess C. Waves and surges in the Valencia Gulf. Variability rather than climate change. Journal of Coastal Re-search. 2009; 56: 243-247.
[13] Gräwe U., Wolff JO., Ribbe J. Impact of climatic variability on an east Australian bay. Estuarine, Coastal and Shelf Science. 2010; 86: 247-257.
[14] Cane MA. The evolution of El Niño, past and future. Earth and Planetary Science Letters. 2005; 230: 227–240.
[15] Paeth H., Scholten A., Friederichs P., Hense A. Uncertainties in climate change prediction: El Niño-Southern Oscillation and monsoons. Global and Planetary Change 2008; 60: 265–288.
[16] Blanco JA., Viloria EA., Narváez B. ENSO and salinity changes in the Ciénaga Grande de Santa Marta coastal lagoon system, Colombian Caribbean. Estuarine, Coastal and Shelf Science. 2006; 66: 157-167.
[17] Poveda G., Mesa O. Feedbacks between Hydrological Processes in Tropical South America and Large Scale Ocean–Atmospheric Phenomena. Journal of Climate. 1997; 10: 2690 – 2702.
[18] Struyf E., Van Damme S., Meire P. Possible effects of climate change on estuarine nutrient fluxes: a case study in the highly nutrified Schelde estuary (Belgium, The Netherlands). Estuarine, Coastal and Shelf Science. 2004; 60: 649-661.
[19] Lloret J., Marín A., Marín-Guirao L. Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estaurine, Coastal and Shelf Science. 2008; 78: 403-412.
[20] Zhang W., Yan Y., Zheng J., Li L., Dong X., Cai H. Temporal and spatial variability of annual extreme water level in the Pearl River Delta region, China. Global and Planetary Change. 2009; 69: 35–47.
[21] UNAL. Flow rate reduction alternative of the Dique Channel through the narrowing of the channel section by sectors and the construction of the lock of Paricuica. Final Report CM-513. 2008; Vol. 1.
[22] Seemüller W., Seitz M., Sánchez L., Drewes H. The position and velocity solution SIR09P01 of the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNAAC SIR). DGFI Report 85. 2009; 96 pp.
[23] Afanador F., Torres R., Gómez JC. LiDAR y fotografía aérea digital en la determinación del impacto del aumento en el nivel del mar en el sector de “La Boquilla”, Cartagena de Indias, Caribe Colombiano. Bol. Cient. CIOH 2006; 24: 94-106.
[24] Andrade CA. Cambios recientes del nivel del mar en Colombia. En: Deltas de Colombia: morfodinámica y vulnerabilidad ante el cambio global. ISBN 978-958-720-020-1. Universidad EAFIT, COLCIENCIAS. 2008; 101 – 121.
[25] Restrepo J., López S. Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America. Journal of South Ame-rican Earth Sciences. 2008; 25: 1–21.
[26] Nicolae-Lerma A., Thomas YF., Durand P., Torres R., Andrade CA. Variabilidad del nivel del mar desde 1950 hasta el 2000 y riesgos asociados a episodios de mar de leva en las penínsulas de Bocagrande y Castillogrande, Cartagena de Indias, Colombia, Boletín Científico CIOH. 2008; 26:71-84.
[27] Lonin SA., Giraldo L. Circulación de las aguas y transporte de contaminantes en la Bahía Interna de Cartagena. Bol. Cient. CIOH. 1995; 16: 25-56.
[28] Lonin SA., Giraldo L. Influencia del intercambio térmico a través del fondo marino en el régimen de temperaturas en zonas costeras. Bol. Cient. CIOH. 1995; 16: 57-72.
[29] Kazakov AL., Lezhenin AA., Spreranzkiy LS. Resultados preliminares del estudio de la capa límite meso-meteorológica de la atmósfera en la costa norte colombiana aplicando un modelo numérico. Bol. Cient. CIOH. 1996; 17: 17-26.
[30] Lonin SA., Giraldo L. Influencia de los efectos térmicos en la circulación de la bahía interna de Cartagena. Bol. Cient. CIOH. 1996; 17: 47-56.
[31] Garay T., Giraldo L. Influencia de los aportes de materia orgánica externa y autóctona en el decrecimiento de los niveles de oxígeno disuelto en la Bahía de Cartagena, Colombia. Bol. Cient. CIOH. 1997; 18: 1-13.
[32] Lonin SA. Cálculo de la transparencia del agua en la Bahía de Cartagena. Bol. Cient. CIOH. 1997; 18: 85–92.
[33] Tuchkovenko Y., Lonin SA., Calero L. Modelo de eutrofización de la Bahía de Cartagena y su aplicación práctica. Bol. Cient. CIOH. 2002; 20: 28-44.
[34] Tuchkovenko Y., Lonin SA. Mathematical model of the oxygen regime of Cartagena Bay. Ecological Modelling. 2003; 165: 91–106.
[35] Shchepetkin A., McWilliams JC. The regional ocean modelling system (ROMS): A split-explicit, free-surface, topography-following coordinates oceanic model. Ocean Modelling. 2005; 9: 347–404.
[36] Song Y., Haidvogel DB. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comp. Phys. 1994; 115 (1): 228-244.
[37] Penven P., Debreu L., Marchesiello P., McWilliams J.Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system. Ocean Modelling. 2006; 12: 157-187.
[38] Locarnini RA., Mishonov AV., Antonov J I., Boyer TP., García HE. World Ocean Atlas 2005, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, D.C., 182 pp.
[39] Antonov JI., Locarnini RA., Boyer TP., Mis-honov AV., García HE. World Ocean Atlas 2005, Volume 2: Salinity. S. Levitus, Ed. NOAA Atlas NESDIS 62, U.S. Government Printing Office, Washington, D.C., 182.
[40] Penven P., Marchesiello P., Lefevre J. Software tools for pre- and post-processing of oceanic regional simulations. Environmental Modelling & Software. 2008. 23: 660-662.
[41] UNAL. Project: Study and research about the works for environmental and navigational restoration for the Dique Channel. Report CM-CD-2. 2007; 97 pp.
[42] CNR–(Compagnie Nationale du Rhône). Estudio de factibilidad y anteproyecto para el programa de restauración del Canal del Dique en Colombia. Final report 2007. Apendix (4/6). N°: DI-EE 07-262a.
[43] Mesa O., Poveda G., Carvajal L F. Introducción al clima de Colombia. Universidad Nacional de Colombia. Sede Medellín. Facultad de Minas. 1997.
[44] Poveda G. La hidro-climatología de Colombia: una síntesis desde la escala interdecadal hasta la escala diurna. Rev. Acad. Colomb. Cienc. 2004; 28: 201-222.
[45] Egbert G., Erofeeva L. Efficient inverse modelling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002; 19: 183-204.
[46] Molares R. Clasificación e identificación de las componentes de marea del Caribe colombiano. Bol. Cient. CIOH 2004; 22: 105-114.
[47] DaSilva A., Young A., Levitus S. Atlas of surface marine data 1994, volume 1: Algorithms and procedures.,” Tech. Rep. 6, U.S. Department of Commerce, NOAA, NESDIS. 1994.
[48] Molares R. The influence of the Dique Channel Discharge on the sea water level of Cartagena Bay. Msc. Tesis. Coastal and Marine Engineering and Management. Tudelft University. 2011.
[49] Nystuen JA., Andrade CA. Tracking mesoscale ocean features in the Caribbean Sea using GEOSAT altimetry. J. Geophys. Res. 1993; 98: 8389-8394.
[50] Andrade CA., Barton E. Eddy development and motion in the Caribbean Sea. J. Geophys. Res. 2000; 105(C11): 26191-26201.
[51] Jouanno J., Sheinbaum J., Barnier B., Molines J., Debreu L., Lemarié F. The mesoscale variability in the Caribbean Sea. Part I: simulations with an embedded model and characteristics. Ocean Modelling. 2008: 23: 82.
[52] Jouanno J., Sheinbaum J., Barnier B., Molines J. The mesoscale variability in the Caribbean Sea. Part II: energy sources. Ocean Modelling. 2009; 26: 226 – 239.
[53] Andrade CA. The Circulation and variability of the Colombian basin in the Caribbean Sea. PhD Thesis, School of Ocean Sciences, University of Wales. 2000.
Downloads
Published
Issue
Section
License
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.