Effects of fluctuating river discharge on the water exchange mechanism of a semi-enclosed micro-tidal bay: Cartagena Bay, Colombia
DOI:
https://doi.org/10.26640/22159045.243Keywords:
floating breakwaters, wave attenuation, coastal protection structuresAbstract
The tidal characteristics of Cartagena Bay (Colombia), its morphology and the flow rate fluctuation of the Dique Channel discharge throughout the year, modify the water exchange mechanism of the bay with the open sea through two entrances (Bocagrande and Bocachica). In arder to study the water exchange process, three different scenarios are designed and numerícally modelled using the Regional Ocean Modelling System (ROMS_AGRIF). The results show that fluctuations of the Dique Channel flow rate discharge strongly modify the underlying ebb-and-flood current regime through the entrances of the bay. Considering the annual increment of the river díscharge (from low to high flow rata discharge), the intensity of the average currents flowing out of the bay through Bocagrande can increase up to a 60 %, while currents entering the bay through Bocachica experiment variations between 23 % (in the deep navigational channel sector) and 50 % in the shallower section. During the high discharge rate season of the Dique Chanel, through Bocagrande entrance at the northwest of the bay, the water mass flux is generally directed out of the bay. This is largely dueto the presence of The Escollera (submersed dike), which is located between the Tierrabomba island and the mainland; it acts as a wall that prevents the influx of denser oceanic waters. At the same time, the mixed and less dense water on the surface is pushed out of the bay by the current induced by Dique Chanel. Two water mass exchange regimes were identified at the southwest of the bay (Bocachica). In the shallow water section, closest to the mainland, the regime is similar to that detected in Bocagrande, and also observed in the surface layers (0 to 6m) on the navigational channel in Bocachica. In the deep layers of the channel, the water flow is directed toward the bay.Downloads
References
[2] Kazakov A.L., Lezhenin, A.A. y Spreranzkiy, L.S. Resultados preliminares del estudio de la capa límite meso-meteorológica de la atmósfera en la costa norte colombiana aplicando un modelo numérico. 1996. Bol. Cient. CIOH; 17: 17-26.
[3] Lonin, S.A. Cálculo de la transparencia del agua en la Bahía de Cartagena. Bol. Cient. CIOH 1997; 18: 85–92.
[4] Hess, K.W. 1985. Assessment model for estuarine circulation and salinity. NOAA Technical Memorandum NESDIS AISC3—National Environmental Satellite, Data, and Information Service, USA, Washington, DC, 39 pp.
[5] Tuchkovenko, Y., Lonin, S.A. y Calero, L. Modelo de eutrofización de la Bahía de Cartagena y su aplicación práctica. 2002. Bol. Cient. CIOH; 20: 28-44 .
[6] Seemüller, W., Seitz, M., Sánchez, L. y Drewes, H. The position and velocity solution SIR09P01 of the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNAAC SIR). DGFI Report 85. 2009 ; 96 pp.
[7] Afanador, F., Torres, R. y Gómez, J.C. LiDAR y fotografía aérea digital en la determinación del impacto del aumento en el nivel del mar en el sector de “La Boquilla”, Cartagena de Indias, Caribe Colombiano. 2006. Bol. Cient. CIOH ; 24 : 94-106.
[8] Andrade, C.A. Cambios recientes del nivel del mar en Colombia. En: Deltas de Colombia: morfodinámica y vulnerabilidad ante el cambio global. 2008. ISBN 978-958-720-020-1. Universidad EAFIT, COLCIENCIAS. p. 101 – 121.
[9] Restrepo, J. y Lopez, S. Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America. Journal of South American Earth Sciences. 2008; 25 : 1–21.
[10] Molares R. The influence of the Dique Channel Discharge on the sea water level of Cartagena Bay. Msc. Tesis. Coastal and Marine Engineering and Management. Tudelft University. 2011.
[11] Torres, R.R. & Tsimplis, M.N. Seasonal sea level cycle in the Caribbean Sea, J. Geophys. Res. 2012 ; 117, C07011, doi:10.1029/2012JC008159.
[12] Zhang, W., Yan, Y., Zheng, J., Li, L., Dong,X. & Cai, H. Temporal and spatial variability of annual extreme water level in the Pearl River Delta region, China. Global and Planetary Change. 2009 ; 69 : 35–47.
[13] Mazzotti, S., A. Lambert, A., Van der Kooij, M. & Mainville A. Impact of anthropogenic subsidence on relative sea-level rise in the Fraser River delta. 2009 ; 37 : 771-774, doi:10.1130/G25640A.1.
[14] González, J.L. & Tornqvist, T.E. Coastal Louisiana in crisis: Subsidence or sea level rise?. 2006EOS 87, 493–498.
[15] Ordóñez, J., Cubillos, E. y Forero, G., 2007. Balance hídrico y sedimentológico del Canal del Dique y sus efectos sobre la sedimentación de la Bahía de Cartagena. Third regional symposium in hydraulics on rivers. 18 pp.
[16] Nicolae-Lerma, A., Thomas, Y.F., Durand, P., Torres. R. y Andrade, C.A. Variabilidad del nivel del mar desde 1950 hasta el 2000 y riesgos asociados a episodios de mar de leva en las penínsulas de Bocagrande y Castillogrande, Cartagena de Indias, Colombia, Boletín Científico CIOH. 2008; 26:71-84.
[17] Lemaitre, E., 1998. Caminos reales de Colombia. El tránsito del Canal del Dique. Fondo Fen. 1998.
[18] Garay, T., Giraldo L., 1997. Influencia de los aportes de materia orgánica externa y autóctona en el decrecimiento de los niveles de oxígeno disuelto en la Bahía de Cartagena, Colombia. Bol. Cient. CIOH 18, 1-13
[19] CIOH. 1999. Executive report. Project: Diseño preliminar del modelo numérico 2D-3D de calidad de aguas para el Canal del Dique y sus sistemas lagunares. 24 pp.
[20] UNAL., 2008. Flow rate reduction alternative of the Dique Channel through the narrowing of the channel section by sectors and the construction of the lock of Paricuica. Final report CM-513. Vol. 1.
[21] Song, Y. & Haidvogel, D. B., 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comp. Phys., 115 (1), 228-244.
[22] Shchepetkin, A. & McWilliams, J. C., 2005. The regional ocean modelling system (ROMS): A split-explicit, free-surface, topography-following coordinates oceanic model. Ocean Modelling, 9, 347–404.
[23] Penven, P., Debreu, L., Marchesiello, P. & McWilliams, J.C., 2006. Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system. Ocean Modelling, 12, 157-187.
[24] Smith, W.H.F. & Sandwell, D.T., 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1957-1962.
[25] Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P. & García, H.E. 2006. World Ocean Atlas 2005, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, D.C., 182 pp
[26] Antonov, J.I., Locarnini, R.A., Boyer, T.P., Mishonov, A.V. & García, H.E. 2006. World Ocean Atlas 2005, Volume 2: Salinity. S. Levitus, Ed. NOAA Atlas NESDIS 62, U.S. Government Printing Office, Washington, D.C., 182.
Downloads
Published
Issue
Section
License
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.