Marine forcings in open boundaries for small coastal models, Cartagena
DOI:
https://doi.org/10.26640/22159045.278Keywords:
Caribbean, Cartagena, numerical models, boundary conditions, hydrodynamicAbstract
A group of methodologies for determining boundary conditions for small coastal models are presented. The lack of oceanographic stations in the Caribbean Sea leads to the use of different sources to determine these forcing, such as: global models for astronomic tides and directional swell (Tide Model Driver, XTide, WaveWatch III, etc.) and remote sensors (Jason). Due to the astronomic tides can present significant differences with measured tide levels, the directional swell models don’t consider shallow water processes and current – wave interaction and the coarse temporal resolution of remote sensors; a new model for the hydrodynamics of the Caribbean was developed. The different methodologies were compared against measurements in the Cartagena region. Through this was determined that the model has a good accuracy, which is equal or better than the other methodologies (swell – WWIII, errors of 16% WWIII and 17% presented model; tides – TMD, errors of 57 % for TMD and 37% for presented model; currents, errors of 17% presented model) and provides more complete information because it includes tides, waves, currents, temperature and salinity with a good temporal and spatial resolution.Downloads
References
[2] González, A. l., Puentes, V., Jiménez, G., Rojas, P. y otros. Programa nacional de investigación para la prevención, mitigación y control de la erosión costera en Colombia. Informe técnico final, Invemar, Santa Marta D. T. C. H, Colombia, 2009.
[3] Mayerle, R., Wilkens, J., Escobar, C. y Windupranata, W. Hydrodynamic Forcing Along the Opne Sea Boundaries of Small – Scale Coastal Models. PROMORPH, 69, 2005.
[4] Palacio, C., García, F. y García, U. Calibración de un modelo hidrodinámico 2D para la bahía de Cartagena. Dyna, 164, 2010.
[5] Velásquez Montoya, L. Modelación del transporte de sedimentos en el golfo de Urabá, Colombia. Tesis de Maestría, Universidad EAFIT, 2013.
[6] Uribe Suárez, D. A. Modelación de la hidrodinámica marina en la región de Cartagena con aplicaciones al transporte de sedimentos. Tesis de maestría, Universidad EAFIT, 2015.
[7] Padman, L. y Erofeeva, S. Tide Model Driver (TMD) Manual. Earth and Space Research, 2005.
[8] Tolman, H. L. User manual and system documentation of WAVEWATCH -III version 1.5. NOAA/NWS/NCEP/OMB, 1997.
[9] OSCAR. OSCAR third degree resolution ocean surface currents. 2014. http://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg/, Consultada el 20 de marzo de 2015.
[10] Thomas, Y., Nicole–Lerma, A y Posada, B. O. Atlas Climatológico del Mar Caribe Colombiano. Instituto de investigaciones Marítimas y Costeras José Benito Vives de Andréis, 2012.
[11] Molares, R. Clasificación e identificación de los componentes de marea del Caribe colombiano. Bol. Cient. CIOH, (22):105–114, 2004.
[12] Richardson, P. L. Caribbean current and eddies as observed by Surface drifters. Deep Sea Research, 52:429 – 463, 2005.
[13] Day, Trevor. Oceans, Facts on File, 2005.
[14] Deltares. Delft3D - Flow user Manual. Deltares, 2013a.
[15] Deltares. Delft3D - Wave user Manual. Deltares, 2013b.
[16] UNESCO, 1981. Background papers and supporting data on the international equation of state 1980. Tech. Rep. 38, UNESCO. 198, 324.
[17] Andrews, D. G. y Mclntyre, M. E. An exact theory of nonlinear waves on a Lagrangian-mean flow. Journal of Fluid Mechanics 89 (4): 609-646, 1978.
[18] Lane, A., 1989. The heat balance of the North Sea. Tech. Rep. 8, Proudman Oceanographic Laboratory. 243, 254.
[19] Leendertse, J. J. Aspects of computational model for long–period water-wave propagation. Rand Corporation, Santa Monica, PHD Thesis, 1967.
[20] GEBCO. General bathymetric chart of the ocean. 2014. URL: http://www.gebco.net/, Consultada el 20 de marzo de 2014.
[21] ARGO. Argo project. 2014. Http://www.argo.net/ , Consultada el 20 de marzo de 2014.
[22] CCMP. Cross calibrated multi plataform ocean surface wind vector l3.0 first look analyses. 2014. Http://podaac.jpl.nasa.gov/, Consultada el 20 de marzo de 2014.
[23] Kalnay, E., Kanamitsu, M., Kistier, R., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. y Joseph, D. The ncep/ncar 40 - year reanalysis project. Bulletin of the American Metereological Society, 1996.
[24] Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Wolleen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., Dool, H., Jenne, R. y Fiorino, M. The ncep-ncar 50–year reanalysis: Monthly means cd-rom and documentation. American Meteorologica Society, 82:247-268, 2001.
[25] Global Runoff Data Center. Monthly discharge data for the world rivers. Research data archive at the national center for Atmospheric research, 2001.
[26] Roldán, P. A. Modelamiento del patrón de circulación de la bahía Colombia, Golfo de Urabá, 2008.
[27] Rijnvan, L. C., Walstra, D. J. R., Grasmeijer, B., Sutherland, J., Pan, S., y Sierra, J. P. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coastal Engineering, 47(3):295 – 327, 2003.
Downloads
Published
Issue
Section
License
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.