ASSESSMENT OF SUSCEPTIBLE AREAS TO HURRICANE STORM SURGE FLOOD FOR THE ARCHIPELAGO OF SAN ANDRES, PROVIDENCIA AND SANTA CATALINA, COLOMBIA.

Authors

  • Wilmer Rey Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal 97356, Mexico. | Centro de Investigaciones Oceanográficas e Hidrográficas - CIOH. Barrio El Bosque, Sector Manzanillo, Cartagena - Colombia
  • Julio Monroy Grupo de Investigación en Oceanología (GIO), Escuela Naval Almirante Padilla, Cartagena de Indias, Colombia.
  • Julián Quintero-Ibáñez Centro de Investigaciones Oceanográficas e Hidrográficas - CIOH. Barrio El Bosque, Sector Manzanillo, Cartagena - Colombia
  • Germán Augusto Escobar Olaya Centro de Investigaciones Oceanográficas e Hidrográficas - CIOH. Barrio El Bosque, Sector Manzanillo, Cartagena - Colom
  • Paulo Salles Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal 97356, México. | Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales CONACYT, Sisal 97356, México.
  • Pablo Ruiz-Salcines Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal 97356, Mexico.
  • Christian M. Appendini Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal 97356, México. | Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales CONACYT, Sisal 97356, México.

DOI:

https://doi.org/10.26640/22159045.2019.465

Keywords:

marea de tormenta, modelación de inundación, MOM, ciclones tropicales, San Andres, Providencia y Santa Catalina

Abstract

Due to the geographical location of the archipelago of San Andres, Providencia, and Santa Catalina (SPSC), it is the most exposed Colombian territory to be flooded by Tropical Cyclones (TC) storm surges. Among the hazards associated with TC, inundation is one that causes the most damage. This study assesses the hurricane storm flood surge worst-case scenario to establish the flood-prone areas in this archipelago. Given the scarcity of historical TC in this archipelago, we generated a hypothetical dataset of TC, which consists of a set of events with a constant wind speed intensity (95.17 m/s), a constant forward speed of 5.87 m/s, and a constant radius of maximum wind of 56.3 km, for tracks with five different approach directions to the area of interest. For each direction, seven parallel tracks, separated by 6 km, were assessed. The same methodology was used for San Andres, and separately for Providencia and Santa Catalina, using different events because of the distance between them (90 km). The model was forced with wind and pressure fields from the hypothetical hurricane dataset to determine the hurricane storm surge and flooding in the archipelago of SPSC. The results include the Maximum of the Maximum Envelopes of Water of the spatial distribution of the water depth (water level above the terrain) for each event, reporting the hurricane storm surge flood worst-case scenario for the archipelago of SPSC. The flood-prone area in San Andres Island is located on the east side, mainly in the sheltered port and on the north side where the main human settlements are located. For Providencia Island, the flood-prone areas are on the east side, surrounding the airport, and on the north side along the channel that separates Providencia from Santa Catalina. For the latter, the flood-prone area is the southeast sector of the island. Under this flood scenario the percentage of the affected area would be 13.39%, 4.24%, y 4.43 % for San Andrés, Providencia and Santa Catalina, respectively.

Downloads

Download data is not yet available.

References

Andrade CA, Barton ED (2000) Eddy development and motion in the Caribbean Sea. J Geophys Res Ocean 105:26191–26201. https://doi.org/10.1029/2000jc000300

Bernal, G., Osorio, A. F., Urrego, L., Peláez, D., Molina, E., Zea, S., Montoya, R.D. y Villegas, N. (2016). Occurrence of energetic extreme oceanic events in the Colombian Caribbean coasts and some approaches to assess their impact on ecosystems. Journal of Marine Systems, 164, 85-100. https://doi.org/10.1016/j.jmarsys.2016.08.007

Chavas DR, Lin N, Emanuel K (2015) A Model for the Complete Radial Structure of the Tropical Cyclone Wind Field. Part I: Comparison with Observed Structure*. J Atmos Sci 72:3647–3662. https://doi.org/10.1175/JAS-D-15-0014.

Chow V Te (1959) Open channel hydraulics. New York

Collazos Guzmán G, Ospina Vallejo HJ, Vargas AM (2007) Estudio descriptivo de la influencia del huracán Beta en las islas de Providencia y Santa Catalina. Boletín Científico CIOH 70:61–70. https://doi.org/10.26640/22159045.163

Devis-Morales A, Montoya-Sánchez RA, Osorio AF, Otero-Díaz LJ (2014) Ocean thermal energy resources in Colombia. Renew Energy 66:759–769.https://doi.org/10.1016/j.renene.2014.01.010

DHI (2014) Mike 21 Flow model FM: Hydrodynamic module, user guide. DHI Water y Environment. Hoersholm, Denmark, p.134

Emanuel K (2004) Tropical cyclone energetics and structure. Atmos Turbul Mesoscale Meteorol 165–191. https://doi.org/10.1017/CBO9780511735035.010

Emanuel K, Ravela S, Vivant E, Risi C (2006) A statistical deterministic approach to hurricane risk assessment. Bull Am Meteorol Soc 87:299–314. https://doi.org/10.1175/BAMS-87-3-299

Emanuel K, Rotunno R (2011) Self-Stratification of Tropical Cyclone Outflow. Part II: Implications for Storm Intensification. J Atmos Sci 69:988–996. https://doi.org/10.1175/JAS-D-11-0177.1

Emanuel K, Sundararajan R, Williams J (2008) Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc 89:347–367. https://doi.org/10.1175/BAMS-89-3-347

Flather RA (2001) Storm Surges. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of Ocean Sciences. Academic, San Diego, California, pp 2882–2892

Holland GJ (1980) An analytical model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 108(8):1212–1218

Holland GJ, Belanger JI, Fritz A (2010) A Revised Model for Radial Profiles of Hurricane Winds. Mon Weather Rev 138:4393–4401. https://doi.org/10.1175/2010MWR3317.1

Jelesnianski C, Chen J, Shaffer W (1992) SLOSH: Sea, lake, and overland surges from hurricanes. NOAA Tech Rep NWS 48, United States Dep Commer NOAA/AOMLLibrary, Miami, Florida 71

Krauss, K. W., Doyle, T. W., Doyle, T. J., Swarzenski, C. M., From, A. S., Day, R. H. y Conner, W. H. (2009). Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands, 29(1), 142. https://doi.org/10.1672/07-232.1

Lin N, Chavas D (2012) On hurricane parametric wind and applications in storm surge modeling. J Geophys Res Atmos 117:1–19.https://doi.org/10.1029/2011JD017126

Lin N, Emanuel K a., Smith J a., Vanmarcke E (2010) Risk assessment of hurricane
storm surge for New York City. J Geophys Res 115:1–11. https://doi.org/10.1029/2009JD013630

Lin N, Emanuel K, Oppenheimer M, Vanmarcke E (2012) Physically based assessment of hurricane surge threat under climate change. Nat Clim Chang 2:462–467. https://doi.org/10.1038/NCLIMATE1389

Lin, N., Lane, P., Emanuel, K. A., Sullivan, R. M. y Donnelly, J. P. (2014). Heightened hurricane surge risk in northwest Florida revealed from climatological‐hydrodynamic modeling and paleorecord reconstruction. Journal of Geophysical Research: Atmospheres, 119(14), 8606-8623. https://doi.org/10.1002/2014JD021584

Meza-Padilla R, Appendini CM, Pedrozo-Acuña A (2015) Hurricane-induced waves and storm surge modeling for the Mexican coast. Ocean Dyn 65:1199–1211. https://doi.org/10.1007/s10236-015-0861-7

NHC (2014a) Storm Surge Overview. http://www.nhc.noaa.gov/surge/. Accessed 5 May 2017

NHC (2014b) Storm Surge Maximum of the Maximum (MOM). http://www.nhc.noaa.gov/surge/momOverview.php Accessed 5 May 2017

Ortiz Royero JC, Plazas Moreno JM, Lizano O (2015) Evaluation of Extreme Waves Associated with Cyclonic Activity on San Andrés Island in the Caribbean Sea since 1900. J Coast Res 31:557–568. https://doi.org/10.2112/jcoastres-d-14-00072.1

Ortiz Royero JC (2012) Exposure of the Colombian Caribbean coast, including San Andrés Island, to tropical storms and hurricanes, 1900-2010. Nat Hazards 61:815–827. https://doi.org/10.1007/s11069-011-0069-1

Osorio AF, Montoya RD, Ortiz JC, Peláez D (2016) Construction of synthetic ocean wave series along the Colombian Caribbean Coast: A wave climate analysis. Appl Ocean Res 56:119–131. https://doi.org/10.1016/j.apor.2016.01.004

Rey, W., Mendoza, E. T., Salles, P., Zhang, K., Teng, Y. C., Trejo-Rangel, M. A., y Franklin, G. L. (2019). Hurricane flood risk assessment for the Yucatan and Campeche State coastal area. Natural Hazards, 96(3), 1041-1065. https://doi.org/10.1007/s11069-019-03587-3

Rey, W., Salles, P., Mendoza, E. T., Torres-Freyermuth, A., y Appendini, C. M. (2018). Assessment of coastal flooding and associated hydrodynamic processes on the south-eastern coast of Mexico, during Central American cold surge events. Natural Hazards & Earth System Sciences, 18(6). https://doi.org/10.5194/nhess-2017-64

Rey, W., Salles, P., Torres-Freyermuth, A., Ruíz-Salcines, P., Teng, Y. C., Appendini, C. M. y Quintero-Ibáñez, J. (2020). Spatiotemporal storm impact on the northern Yucatan coast during hurricanes and central American cold surge events. Journal of Marine Science and Engineering, 8(1), 2. https://doi.org/10.3390/JMSE8010002

Ruiz-Salcines, P., Salles, P., Robles-Díaz, L., Díaz-Hernández, G., Torres-Freyermuth, A. y Appendini, C. M. (2019). On the Use of Parametric Wind Models for Wind Wave Modeling under Tropical Cyclones. Water, 11(10), 2044.https://doi.org/10.3390/w11102044

Sealy KS, Strobl E (2017) A hurricane loss risk assessment of coastal properties in the caribbean: Evidence from the Bahamas. Ocean Coast Manag 149:42–51. https://doi.org/10.1016/j.ocecoaman.2017.09.013

Sleigh PA, Gaskell PH, Berzins M, Wright NG (1998) An Unstructured Finite Volume Algorithm for Predicting Flow in Rivers and Estuaries. Comput Fluids 27:479–508. https://doi.org/10.1016/S0045-7930(97)00071-6

Torres RR y Tsimplis MN (2014) Sea level extreme in the Caribbean Sea. J Geophys
Res Ocean 119:4714–4731. https://doi.org/10.1002/jgrc.20224

UNGRD (2018) Atlas de Riesgo de Colombia: revelando los desastres latentes. Gobierno de Colombia. Bogotá, D.C, Colombia. 269 p

Wisner B, Blaikie P, Cannon T y Davis I (2004) At Risk: natural hazards, people’s vulnerability and disasters Second edition. Routledge, London and New York

Zachry BC, Booth WJ, Rhome JR y Sharon TM (2015) A National View of Storm Surge Risk and Inundation. Weather Clim Soc 7:109–117. https://doi.org/10.1175/WCAS-D-14-00049.1

Zhang, K., Liu, H., Li, Y., Xu, H., Shen, J., Rhome, J. y Smith III, T. J. (2012). The role of mangroves in attenuating storm surges. Estuarine, Coastal and Shelf Science, 102, 11-23. https://doi.org/10.1016/j.ecss.2012.02.021

Zhao, D. H., Shen, H. W., Tabios III, G. Q., Lai, J. S. y Tan, W. Y. (1994). Finite-volume two-dimensional unsteady-flow model for river basins. Journal of Hydraulic Engineering, 120(7), 863-883. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:12(1497)

Downloads

Published

2019-12-30

Issue

Section

RESEARCH ARTICLE

How to Cite

ASSESSMENT OF SUSCEPTIBLE AREAS TO HURRICANE STORM SURGE FLOOD FOR THE ARCHIPELAGO OF SAN ANDRES, PROVIDENCIA AND SANTA CATALINA, COLOMBIA. (2019). CIOH Scientific Bulletin, 38(2), 57-68. https://doi.org/10.26640/22159045.2019.465

Similar Articles

1-10 of 351

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)