Uso de un modelo regional para el mar Caribe para obtener condiciones fronteras abiertas en un modelo local para la bahía de Santa Marta - Colombia

Autores/as

  • Francisco García Rentería Universidad del Magdalena
  • Carlos Palacio Tobón Universidad de Antioquia
  • Uriel García Universidad del Magdalena

DOI:

https://doi.org/10.26640/22159045.175

Palabras clave:

Anidamiento de mallas, modelos hidrodinámicos, oceanografía, mallas no estructuradas

Resumen

Debido a la falta de información de mediciones de mareas en la bahía de Santa Marta, la técnica de acoplamiento de mallas fue usada para obtener las condiciones en las fronteras abiertas en un modelo local para esta área costera. Un modelo regional para el mar Caribe fue calibrado usando datos del modelo oceánico global de mareas TPX 6.2 y mediciones de la elevación de la superficie del mar en la Bahía de Cartagena. El modelo para el mar Caribe permitió conocer las condiciones de fronteras para el modelo local.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Francisco García Rentería, Universidad del Magdalena

    Grupo de Control de la Contaminación Ambiental, Universidad del Magdalena

  • Carlos Palacio Tobón, Universidad de Antioquia

    Grupo de Ingeniería y Gestión Ambiental (GIGA), Universidad de Antioquia

  • Uriel García, Universidad del Magdalena

    Grupo de Control de la Contaminación Ambiental, Universidad del Magdalena

Referencias

[1] Blain C, Rogers W. Coastal tide prediction using the ADCIRC-2DDI hydrodynamic finite element model: Model validation and sensitivity analyses in the Southern North Sea/English Channel. Mississippi: Naval Research Laboratory, Stennis Space Center; 1998.

[2] Reid R, Whitaker R. Numerical model for astronomical tides in the Gulf of Mexico: Theory and application. Mississippi: Coastal Engineering Research Center, U.S. Army Corps of Engineers Waterways Experiment Station; 1981.

[3] Gray WG, Drolet J and Kinnmark IP. Asimulation of tidal flow in the southern part of the North Sea and the English Channel. Adv Water Resour 1987; (10): 131-137.

[4] Le Provost C, Vincent P. Some tests of precision for a finite element model of ocean tides. J Comput Phys 1986; (65): 273-291.

[5] Flather RA. Anumerical model investigation of tides and diurnal-period continental Shelf waves along Vancouver Island. J Phys Oceanogr 1988;(18): 115-139.

[6] Foreman MG. A comparison of tidal models for the southwest coast of Vancouver Island, Proceedings of the VII International Conference on Computational Methods in Water Resources; 1988 june; Cambridge, MA: Elsevier; 1988.

[7] Baptista AM, Westerink JJ, Turner PJ. Tides in the English channel and southern north sea - a frequency domain analysis using model TEA-NL. Adv Water Resour 1989; (12): 166-183.

[8] Al-Rabeh AH, Eunay N,Cekirge HM. Ahydrodynamic model for wind driven and tidal circulation in the Arabian gulf. Appl Math Model 1990; (14): 410-419.

[9] Westerink JJ, Luettich RA, Blain CA,Hagen SC. The utility of the finite element method in computing surface elevation and circulation in continental margin waters. In: Carey GF, editor. Finite Element Modeling of Environmental Problems. 1ra ed. New York, John Wiley and Sons, 1995. 39-59.

[10] Hendershott MC. Long waves, ocean Tides. In: Warren BAand Wunsch C, editors. Evolution of Physical Oceanography. Cambridge, MA. MITPress;1981; 292-341.

[11] Bennett A. Inverse methods in physical oceanography. New York: Cambridge University Press; 1992.

[12] Yang Z, Hamrick JM. Optimal control of salinity boundary condition in a tidal model using a variational inverse method. Est Coast Shelf Sci 2005; (62): 13-24.

[13] Roed LP, Cooper CK. Open boundary conditions in numerical ocean models. In: O'Brien JJ. editor. Advanced Physical Oceanographic Numerical Modelling; 1986; 411-436.

[14] Bourret A, Devenon JL, Chevalier C. Investigation on passive open boundary conditions adapted to the conjunction of strong currents, standing tidal wave and high stratification: application to the French Guiana continental shel. Cont Shelf Res 2005; (25): 1353-1373.

[15] Schwiderski EW. On charting global ocean tides. Rev Geophys Space Phys 1980;(18): 243-268.

[16] Egbert GD, Bennett AF, Foreman MG. TOPEX/ POSEIDON tides estimated using a global inverse model. J Geophys Res C 1994; 99(C12): 24821-24852.44 García et al.: Uso de un modelo regional para el mar Caribe.

[17] Arnoso J, Benavent M, Ducarmeb B, Montesinos FG. A new ocean tide loading model in the Canary Islands region. J Geodyn 2006; (41): 100-111.

[18] Andersen OB, Woodworth PL, Flather RA. Intercomparison of recent ocean tide models. J Geophys Res 1995; (100): 25261-25282.

[19] Shum CK, Woodworth PL, Anderson OB. Accuracy assessment of recent ocean tide models. J Geophys Res 1997; (102): 25173-25194.

[20] Ray RD. A global ocean tide model from TOPEX/ POSEIDON altimetry: GOT 99.2, NASA/TM-1999; 209478.

[21] Desai SD, Wahr JM. Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry. J Geophys Res 1995;(100): 5205-5228.

[22] Egbert GD. Tidal data inversion: interpolation and inference. Prog Oceanogr 1997; (40): 53-80.

[23] Kantha LH. Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides, 1, Model description and results. J Geophys Res 1995; (100): 25283-25308.

[24] Le Mehaute B. An Introduction to Hydrodynamics and Water Waves. New York: Springer-Verlag; 1976.

[25] Eanes RJ, Bettadpur S. The CSR3.0 global ocean tide model,CSR-TM-95-06. Austin: Center for Space Research, University of Texas; 1995.

[26] Matsumoto K, Takanezawa T, Ooe M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model a round Japan. J. Oceanogr 2000; (56): 567-581.

[27] Egbert GD, Erofeeva SY. Efficient inverse modeling of barotropic ocean tides. J Ocean Atmos Technol 2002; 19(2): 183-204.

[28] Fu LL, Christensen EJ, Yamarone JC, Lefebvre M, Menard Y, Dorrer M, et al. TOPEX/POSEIDON mission overview. J Geophys Res 1994; 99(24): 369-381.

[29] MaXC, Shum CK, Eanes RJ, Tapley BD. Determination of ocean tides from the 1rst year of TOPEX/POSEIDON altimeter measurements. J Geophys Res 1994; (99): 24809-24820.

[30] Mazzega P, Berge M. Ocean tides in the Asian semi-enclosed seas from TOPEX/POSEIDON. J Geophys Res, 1994;(99): 24867-24881.

[31] Han G, Ikeda M, Smith PC. Oceanic tides over the New foundland and Scotian Shelves from TOPEX/POSEIDON altimetry. Atmos Ocean 1996; (34): 589-604.

[32] Woodworth PL, Thomas JP. Determination of the major semidiurnal tides of the northwest European continental shelf from Geosat altimetry. J Geophys Res 1990;(95): 3061-3068.

[33] Han G, Ikeda M, Smith PC. Annual variation of sea-surface slopes over the Scotian Shelf and Grand Banks from Geosat altimetry. Atmos. Ocean 1993;(31): 591-615.

[34] Han G, Ikeda M. Dynamical interpolation of tidal constituents derived from altimeter data. In: IAPSO, editors. XXI General Assembly of IAPSO (International Association for the Physical Sciences of the Ocean); 1995 Aug 5-12; Honolulu, Hawaii. USA: 1995.

[35] Han G, Hendry R, Ikeda M. Assimilating TOPEX/POSEIDON derived tides in a primitive equation model over the New foundland Shelf Cont. Shelf Res. 2000; (20): 83-108.

[36] Le Provost C, Lyard CF. A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-drived data set. J Geophys Res 1998;103(C3): 5513-5529.

[37] Yu N, Shum CK, Morris C, Parke M. Accuracy assessment of ocean tide models in coastal regions. American Geophysical Union Fall Meeting; 1999 Dic 13-17; San Francisco, California, USA. 1999.

[38] He Y, Lub X, Qiua Z, Zhaoc J. Shallow water tidal constituents in the Bohai Sea and the Yellow Sea from a numerical adjoint model with TOPEX/POSEIDON altimeter data. Cont Shelf Res 2004; (24): 1521-1529.

[39] Lefevre F, Le Provost C, Lyard FH. How can we improve a global ocean tide model at a regional scale? Atest on the Yellow Sea and East China Sea. J Geophys Res 2000; 105 (C4): 8707-8725.

[40] Vandenbulcke L, Barth A, Rixen M, Alvera-Azcarate A, Ben Bouallegue Z, Beckers JM. Study of the combine deffects of data assimilation and grid nesting in ocean models application to the Gulf of Lions. Ocean Sci 2006; (2): 213-222. Boletín Científico CIOH No. 26, ISSN 0120-0542, (2008) 33-46.

[41] Oey L, Chen P. A model simulation of circulation in the Northeast Atlantic shelves and seas. J Geophys Res 1992;(97): 20087-20115.

[42] Pinardi N, Allen I, Demirov E, De Mey P, Lascaratos A, Le Traon Pet al.The Mediterranean ocean forecasting system: first phase of implementation (19982001). Ann Geophys 2003; (21): 3-20.

[43] Korres G, Lascaratos A. A one-way nested eddy resolving model of the Aegean and Levantine basins: implementation and climatological runs. Ann Geophys 2003; (21): 205-220.

[44] Echevin V, Cr ́epon M, Mortier L. Simulation and analysis of the mesoscale circulation in the northwestern Mediterranean Sea. Ann Geophys 2003; (21): 281-297.

[45] Zavatarelli M, Pinardi N. The Adriatic Sea modelling system: a nested approach. Ann Geophys 2003;(21): 345-364.

[46] Auclair F, Marsaleix P, Estournel C. The penetration of the Northern Current over the Gulf of Lions (Mediterranean) as a downscaling problem. Oceanolog Acta 2001; (24): 529-544.

[47] Hoyos IC. Modelo Hidrodinámico preliminar de las bahías de Sapzurro y Capurganá, Darién Colombiano. Medellín: Universidad de Antioquia Facultad de Ciencias exactas y Naturales; 2007.

[48] Persson PO, Strang G. A simple mesh generator in MATLAB. SIAM Rev 2004; 46(2): 329-345.

[49] Legrand V, Legat E, Deleersnijder F. Delaunay mesh generation for an unstructured-model. Ocean Modelling 2000;(2): 17-28.

[50] Hanert E, Le Roux D, Legat V, Deleersnijder E. An efficient Eulerian finite element method for the shallow water equations. Ocean Modelling 2005;(10): 115-136.

[51] Field D. Qualitative measures for initial meshes. Int J Numer Methods Eng 2000; (47): 887-906.

[52] Mouthaan EA, Heemink AW, Robeczewska KB. Assimilation of ERS-1 altimeter data in a tidal model of the continental Shelf. Netherlands: National Institute for Coastal and Marine Management; 1994.

[53] Gerritsen H, Vries JW, Philippart ME. The Dutch continental shelf model. Quantitative skill assessment for coastal ocean models. Coastal Estuarine Stud 1995; (48): 425-467.

[54] Palacio TC. Metodología para la validación de modelos Hidrodinámicos utilizando amplia información de campo: Aplicación a la bahía Melford en la costa del mar del Norte Alemán. Medellín: Universidad Nacional de Colombia; 2002.

[55] Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin Let al. The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 1996; (77): 437-471.

[56] Simmonds I, Keay K. Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP-NCAR Reanalysis J Clim 2000; (13): 873-885.

[57] Simionato C, Meccia V, Dragani W, Nuñez M. On the use of the NCEP/NCAR surface winds for modeling barotropic circulation in the Río de la Plata Estuarine Coastal Shelf Sci 2006; (70): 195-206.

[58] Greenberg D, Dupont F, Lyard F, Lynch D, Werner F. Resolution issues in numerical models of oceanic and coastal circulation. Cont Shelf Res 2007; (27): 1317-1343.

Descargas

Publicado

2008-12-21

Número

Sección

Artículos de investigación científica y tecnológica

Cómo citar

Uso de un modelo regional para el mar Caribe para obtener condiciones fronteras abiertas en un modelo local para la bahía de Santa Marta - Colombia. (2008). Boletín Científico CIOH, 26, 33-46. https://doi.org/10.26640/22159045.175

Artículos similares

291-300 de 343

También puede Iniciar una búsqueda de similitud avanzada para este artículo.