Coastal dynamics in the barrier reef located in the northeastern sector of San Andres Island, Colombian Caribbean

Authors

  • Oscar Javier Fajardo Espinosa Escuela Naval de Suboficiales ARC “Barranquilla”
  • Serguei Lonin Escuela Naval de Cadetes "Almirante Padilla"

DOI:

https://doi.org/10.26640/22159045.2021.525

Keywords:

Coral reef, coastal hydrodynamics, numerical modeling, wave climatology, critical wave breaking height.

Abstract

The breaking wave-induced hydrodynamics over the coral reef barrier of the Seaflower Biosphere Reserve, located in the northeast sector of the San Andrés Island, was characterized. Similarly, the effects of the coral reef on possible hydrodynamic processes and its function as a natural barrier against coastal erosion in adjacent areas were described. For this study, high-resolution bathymetric information was obtained via echo-sounding and data-processing of satellite images of the shallower areas. Furthermore, numerical modelling using the Lithodynamic Coastal Zone (LIZC; Litodinámico de la Zona Costera) model along with the spectral wave module (SWAN; Simulating Wave Nearshore) was performed. Additionally, real-time modelling (now-casting) run throughout one year provided details on dynamic patterns and determined the breaking point of the waves upon their arrival to the coral reef. Results displayed a bi-modal behavior of the studied area’s hydrodynamics which was significantly dependent on the waves’ height, period, and direction thresholds. Moreover, the average wave energy flow was identified as being responsible for the evolutionary growth of the barrier on its current location and orientation. Although this pilot study focused on the northeast sector of the San Andrés Island, the present methodology could be applied on similar scenarios where shorelines are naturally protected by coral reefs.

Downloads

Download data is not yet available.

References

Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. y Watkinson, A. R. (2009). Aplanamiento de los arrecifes de coral del Caribe: disminución de la complejidad arquitectónica en toda la región. Proc. Roy Soc. Lond. B Bio., 276, 3019–3025.
Andrade-Amaya, C. A. (2012). Oceanografía del archipiélago de San Andrés, Providencia y Santa Catalina. En CORALINA-INVEMAR., Atlas de la Reserva de Biósfera Seaflower. (págs. 53-59). Santa Marta: Ediprint Ltda.
Appendini, C., Paulo Salles, E., Tonatiuh Mendoza, J., & Torres-Freyermuth, A. (2012). Longshore Sediment Transport on the Northern Coast of the Yucatan Peninsula. Journal of Coastal Research: Volume 28, Issue 6, 1404 – 1417.
Baldock, T.E., A. Golshani, D.P. Callaghan, M.I. Saunders, and P.J. Mumby. (2014). Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs. Marine Pollution Bulletin 83 (1): 155–164. https://doi.org/10.1016/j.marpolbul.2014. 03.058.
Battjes, J., & Janssen, J. (1978). Energy loss and set-up due to breaking of random waves. En Coastal Engineering.
Bolaños, R. (2007). Tormentas de oleaje en el Mediterráneo: Física y predicción. En C. Dagua, Influencia de eventos de corto y mediano plazo en el oleaje del mar Caribe. (pág. 36). Cartagena, D. T. y C.: Tesis de Maestría.
Booij, N., Ris, R., & Holthuijsen, L. (1999). A third generation wave model for coastal regions. En I. Ramos De La Hoz, Dinámica sedimentaria en una flecha litoral: El caso de Galerazamba (pág. 29). Cartagena D. T. y C.: Tesis de Maestría.
Buckley, Mark L., Ryan J. Lowe, Jeff E. Hansen, & Ap R. Van Dongeren. (2016). Wave setup over a fringing reef with large bottom roughness. Journal of Physical Oceanography 46 (8): 2317–2333. https://doi.org/10.1175/JPO-D-15-0148.1.
Caldwell, P. M. (2015). Sea level measured by tide gauges from global oceans. The Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for Environmental Information, Dataset, doi:10.7289/V5V40S7W. Obtenido de http://www.ioc-sealevelmonitoring.org/station.php?code=sama.
Chopakatla, SC., Lippmann, TC. & Richardson, JE. (2008) Field verification of a computational fluid dynamics model for wave transformation and breaking in the surf zone. J Waterw Port, Coastal, Ocean Eng 134:71–80
CORALINA-INVEMAR. (2012). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Santa Marta: Ediprint Ltda.
Coronado, C., Candela, J., Iglesias-Prieto, R., Sheinbaum, J., López, M., & Ocampo-Torres, F. (2007). On the circulation in the Puerto Morelos fringing reef lagoon. Coral Reefs, 26, 149–163.
Crossland, C., Hatcher, B., & Smith, S. (1991). The role of coral reefs in global carbon production, Coral Reefs.
Dagua Paz, C. J., Lonin, S., Urbano Latorre, C. P., & Orfila Förster, A. (2013). Calibración del modelo SWaN y validación de reanálisis del oleaje en el Caribe. Obtenido de Boletín Científico CIOH, No. 31: https://www.cioh.org.co/dev/publicaciones/resumboletin/b31_dev.php
Dagua, C. (2013). Influencia de Eventos Climaticos de Corto y Mediano Plazo en el Oleaje del mar Caribe. Cartagena, Bolívar.
Delft University of Technology. SWAN team. (2018). SWAN user manual. Obtenido de SWAN Simulating WAves Nearshore: http://swanmodel.sourceforge.net/
Demirbilek, Z., Nwogu, OG., Ward, DL., Sánchez, A. (2009). Wave transformation over reefs: evaluation of One-Dimensional numerical models
Departamento de Información Pública de las Naciones Unidas, "Life below water: why it matters” (2016). Disponible en https://www.un.org/es/chronicle/article/podemos-salvar-los-arrecifes-de-coral
Díaz, J. M. (2014). Uso correcto de la correlación cruzada en Climatología: el caso de la presión atmosférica entre Taití y Darwin*. Revista Terra nueva 80 etapa. Volumen XXX, N° 47, 79-102.
Dirección General Marítima, C. d. (2009). Caracterización físico-biótica del litoral Caribe colombiano. Tomo I. Cartagena D. T. y C.: DIMAR.
Fang, K., Yin, J., Liu, Z., Sun, J., & Zou, Z. (2014). Revisiting study on Boussinesq modeling of wave transformation over various reef profiles. Water Sci Eng 7:306–318
Ferrario, F., Beck, M., Storlazzi, C., Micheli, F., Shepard, C., & Airoldi, L. (2014). The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 3794.
Flather, R. (2001). Storm Surges. Steele JH, Thorpe SA, Turekian KK (eds), Encyclopedia of ocean sciences. Academic, San Diego, 2882-2892.
Galán, A., Orfila, A., Simarro, G., Hernandez-Carrasco, I., & López, C. (2012). Wave mixing rise inferred from Lyapunov exponents Environmental Fluid Mechanics. Environmental Fluid Mechanics , 291-300.
Gamboa, L., & Posada, B. O. (2012). Geología del archipiélago de San Andrés, Providencia y Santa Catalina. En CORALINA-INVEMAR, Atlas de la Reserva de Biósfera Seaflower. (págs. 36-46). Santa Marta: Ediprint Ltda.
Geister, J., (1977). The influence of wave exposure on the ecological zonation of Caribbean coral reefs. In: Taylor, D.L. (Ed.), Proceedings of the Third International Coral Reef Symposium. University of Miami, Rosenstiel School of Marine and Atmospheric Science, pp. 23–29.
Gemma L, F., Mariño-Tapia, I., & Torres-Freyermuth, A. (2013). Effects of reef roughness on wave setup and surf zone currents. Journal of Coastal Research 165: 2005–2010. https://doi.org/ 10.2112/SI65-339.1.
Gemma L, F., Torres-Freyermuth, A., Medellin, G., Allende-Arandia, M., & Appendini, C. (2018). The role of the reef–dune system in coastal protection in Puerto Morelos (Mexico). Natural Hazards and Earth System Sciences, 18, 1247-1260.
Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM. (2018). IDEAM. Obtenido de http://www.ideam.gov.co/web/tiempo-y-clima/
Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM. (2017). IDEAM. Obtenido de: http://www.ideam.gov.co/documents/21021/137236/CARTILLA+CARIBE+2018/2a0d6363-3092-4846-9f00-28fe55f9a6c2?version=1.2
Lesser, M.P., Slattery, M., Leichter, J.J., (2009). Ecology of mesophotic coral reefs. J. Exp. Mar. Bio. Ecol. 375, 1–8. http://dx.doi.org/10.1016/j.jembe.2009. 05.009.
Longuet-Higgins, M., & Stewart, R. (1962). Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. Fluid Mech. 13, 481. http://dx.doi.org/10.1017/S0022112062000877.
Longuet-Higgins, M., & Stewart, R. (1964). Radiation stresses in water waves. A physical discussion, with applications. Deep-Sea Res., 11, 529-562.
Lonin, S. (2002a). Un Modelo Morfodinámico para la Zona Costera del Caribe Colombiano. En Boletin Científico CIOH No. 20 (págs. 5-17). Cartagena de Indias, D. T. y C.: CIOH.
Lonin, S. (2002b). Aplicación del modelo LIZC (CIOH) para el estudio de la dinámica de playa en un sector del Golfo de Morrosquillo. Boletín Científico CIOH No. 20. Octubre de 2002, 18-27.
Lonin, S. (2009). Modelación numérica en oceanología. DIMAR, CAN, Santafé de Bogotá, Colombia.
Lonin, S., Orfila Forster, A., Simarro Grande, G., Galán Alguacil, A., Alvarez Ellacuría, A., Murillo, N., Platz, C. & Torres, R. (2018). Propagación de oleaje y transporte de sedimentos sobre arrecifes de coral. Estrategias de gestión ante el cambio global. Cartagena.
López Dupre, A. F. (2012). Comparación de la estructura íctica del arrecife artificial "Blue Diamond" y el arrecife natural aledaño, en la Isla de San Andrés, Caribe colombiano. Bogotá D.C.
Lugo-Fernandez, A., Roberts, H., & Suhayda, J. (1998). Wave transformations across a Caribbean fringing-barrier coral reef. Cont. Shelf Res., 18, 1099–1124.
Massel, S. (1996). Ocean surface waves. Their physiscs and prediction. En C. Dagua, Influencia de eventos de corto y mediano plazo en el oleaje del mar Caribe. (pág. 37). Cartagena, D. T. y C.: Tesis de Maestría.
Monismith, SG. (2007). Hydrodynamics of Coral Reefs. Annu Rev Fluid Mech 39:37–55.
Montaggioni, L.F. & Braithwaite, C.J.R., (2009). Chapter three structure, zonation and dynamic patterns of coral reef communities. In: Montaggion, L.F., Braithwaite, C.J.R. (Eds.), Quaternary Coral Reef Systems: History, Development Processes and Controlling Factors. Elsevier, pp. 67–122. http://dx.doi.org/10.1016/S1572-5480(09)05003-9.
NOAA, N. O. (2019). User manual and system documentation of WAVEWATCH III version 6.07. Obtenido de National Weather Service, Environmental Modeling Center: https://github.com/NOAA-EMC/WW3/wiki/Manual
Orfila, A., Jordi, A., Basterretxea, G., Vizoso, G., Marba, N., Duarte, C.M., Tintore, J., & Werner, C. (2005). Residence Time and Posidonia oceanica in Cabrera Island National Park, Spain. Continental Shelf Research, 25: 1339-1352.
Ortiz, J., Plazas, J., & Lizano, O., (2015). Evaluation of Extreme Waves Associated with Cyclonic Activity on San Andres Island in the Caribbean Sea since 1900. Journal of Coastal Research, 31(3): 557-568, URL: https://doi.org/10.2112/JCOASTRES-D-14-00072.1
Osorio-Cano, Juan D., Alcérreca-Huerta, Juan C., Osorio, Andrés F., & Oumeraci, Hocine (2018). CFD modelling of wave damping over a fringing reef in the Colombian Caribbean. Coral Reefs, 37:1093–1108https://doi.org/10.1007/s00338-018-1736-4
Osorio-Cano, Juan D., Alcérreca-Huerta, Juan C., Osorio, Andrés F., & Oumeraci, Hocine (2019). Drag and inertia forces on a branched coral colony of Acropora palmata. Journal of Fluids and Structures 88: 31–47. https://doi.org/10.1016/j.jfluidstructs.2019.04.001.
Osorio-Cano, Juan D., Alcérreca-Huerta, Juan C., Mariño-Tapia, Ismael, Osorio, Andrés F., Acevedo-Ramírez, Cesar, Enriquez, Cecilia, Costa, Mirella, Pereira, Pedro, Mendoza, Edgar, Escudero, Mireille, Astorga-Moar, Alejandro, López-González, José, Appendini, Christian M., Silva, Rodolfo, & Oumeraci, Hocine (2019). Effects of Roughness Loss on Reef Hydrodynamics and Coastal Protection: Approaches in Latin America. Estuaries and Coasts (2019) 42:1742–1760.
Plazas Moreno, J. M., Ortiz Royero, J. C., & Lizano R., O. G. (2011). Evaluación de la actividad ciclónica y el impacto del oleaje en la Isla de San Andrés desde 1851 hasta 2010. Boletín Científico CIOH No. 29, 8-26.
Posada Posada, B. O., Henao Pineda, W., & Morales Giraldo, D. F. (2011). Diagnóstico de la erosión costera del territorio insular colombiano. Santa Marta: Ediprint Ltda.
Quataert, Ellen, Curt Storlazzi, Arnold van Rooijen, Olivia Cheriton, and Ap van Dongeren. (2015). The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophysical Research Letters 42 (15): 6407–6415. https://doi.org/10.1002/ 2015GL064861.
Ramos De la Hoz, I. M. (2017). Dinámica sedimentaria en una flecha litoral: El caso de Galerazamba. Cartagena de Indías, D. T. y C.
Rey, W., Monroy, J., Quintero-Ibáñez, J., Escobar, G., Salles, P., Ruiz-Salcines, P., Appendini, C. (2019). Evaluación de áreas susceptibles a la inundación por marea de tormenta generada por ciclones tropicales en el archipiélago de San Andrés, Providencia y Santa Catalina, Colombia. Pendiente por publicar. Copia facilitada directamente por Rey, W.
Rogers, Justin S., Stephen G. Monismith, David A. Koweek, & Robert B. Dunbar. (2016). Wave dynamics of a Pacific atoll with high frictional effects. Journal of Geophysical Research: Oceans 121 (1): 350–367. https://doi.org/10.1002/2015JC011170.
Ruiz de Alegria-Arzaburu, Amaia, Ismael Mariño-Tapia, Cecilia Enriquez, Rodolfo Silva, and Mariana González-Leija. (2013). The role of fringing coral reefs on beach morphodynamics. Geomorphology 198: 69–83. https://doi.org/10.1016/j.geomorph. 2013.05.013.
Sheppard, Charles, David J. Dixon, Michael Gourlay, Anne Sheppard & Rolph Payet. (2005). Coral mortality increases wave energy reaching shores protected by reef flats: Examples from the Seychelles. Estuarine, Coastal and Shelf Science 64 (2-3): 223–234. https://doi.org/10.1016/j.ecss.2005.02.016.
Sheremet, A., Kaihatu, JM., Su, S., Smith, ER., & Smith, JM. (2011). Modeling of nonlinear wave propagation over fringing reefs. Coast Eng 58:1125–1137
Sierra, J., Tomé, M., & Sánchez-Arcilla, A. (1999). Un modelo numérico para la simulación de la evolución del fondo marino en la zona cercana a la costa. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. Vol. 15, 381-401.
Torres-Freyermuth, A., Lara, JL., & Losada, IJ. (2010). Numerical modelling of short- and long-wave transformation on a barred beach. Coast Eng 57:317–330
Torres-Freyermuth, A., Mariño-Tapia, I., Coronado, C., Salles, P., Medellín, G., Pedrozo-Acuña, A., Silva, R., Candela, J., & Iglesias-Prieto R., (2012). Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon. Nat Hazards Earth Syst Sci 12:3765–3773
U.S Army Corps of Engineers. (2002). Coastal Engineering Manual (CEM), Engineer Manual 1110-2-1100. Washington, D.C.: U.S. Army Corps of Engineers.
Werding, B., Sánchez, H., (1989). The coral formations and their distributional pattern along a wave exposure gradient in the area of Santa Marta, Colombia. MEDIO Ambient. 10, 61–68.
Young, IR. (1989). Wave transformation over coral reefs. J Geophys Res 94:9779–9789.
Yu, X., Rosman, JH., Hench, JL. (2018). Interaction of Waves with Idealized High-Relief Bottom Roughness. J Geophys Res Ocean 123:3038–3059

Downloads

Published

2022-08-09

Issue

Section

RESEARCH ARTICLE

How to Cite

Coastal dynamics in the barrier reef located in the northeastern sector of San Andres Island, Colombian Caribbean. (2022). CIOH Scientific Bulletin, 40(2), 13-33. https://doi.org/10.26640/22159045.2021.525

Similar Articles

1-10 of 349

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 > >>