Daytime breeze cycle characterization in a tropical coastal region using the WRF model: the case of the Gulf of Urabá, Colombia
DOI:
https://doi.org/10.26640/22159045.2022.594Keywords:
Sea breezes, WRF model, hodograph, Gulf of UrabáAbstract
Determining the wind fields associated with sea breezes is essential for assessing oceanic-atmospheric processes in coastal areas, such as the transport of pollutants and the generation of wind-sea waves. With this information, it is possible to quantify the produced effects from the continent in the sea and understand the coastal erosion processes during the day. It is important to emphasize that in the coastal part of the Gulf of Urabá, there is frequent disposal of pesticides spread from small planes and that the east coast of the gulf presents accelerated coastal erosion processes. In the present work, the characterization of the diurnal cycle of sea breezes on the coasts of the Gulf of Urabá was carried out using the results of the Weather Research and Forecasting (WRF) model. To this purpose, wind and temperature fields were analyzed for January and February from 2008 to 2013. Wind values at various levels of the vertical and surface wind fields were compared with in situ information. It was found that the breeze system begins its movement from sea to land between 07:00 and 10:00 local time (LT) and reverses between 13:00 and 16:00LT. Evidence of the change of direction is the surface temperature values which were positively correlated with the wind. As future work, the WRF model is expected to be implemented for recent years to carry out an adequate calibration/validation process using climatic stations that have been installed lately.
Downloads
References
Arrillaga, J., Yagüe, C., Sastre,M., Román-Cascón, C.(2016).A characterisation of sea-breeze events in the eastern Cantabrian coast (Spain) from observational data and WRF simulations. Atmospheric Research, 181: 265-280. https://doi.org/10.1016/j.atmosres.2016.06.021.
Arun Aravind, C.V., Srinivas, M. N., Hegde, H. Seshadri, D.K., Mohapatra. (2022). Impact of land surface processes on the simulation of sea breeze circulation and tritium dispersion over the Kaiga complex terrain region near west coast of India using the Weather Research and Forecasting (WRF) model. Atmospheric Environment: X, 13,100149. https://doi.org/10.1016/j.aeaoa.2022.100149.
Azorín-Molina, C. (2004). Estimación de la ocurrencia de la brisa marina en Alicante. IV Congreso de la Asociación Española de Climatología. Santander, España. http://hdl.handle.net/20.500.11765/8945
Azorín-Molina, C. y López-Bustins, J. (2006). WeMOi: Criterio Objetivo de selección de la brisa marina en el sureste de la península Ibérica (Alicante). Clima, sociedad y medio ambiente, España: Zaragoza: Asociación Española de Climatología. http://hdl.handle.net/20.500.11765/8741
Bao, X. y Zhang, F. (2013). Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 Reanalysis Datasets against Independent Sounding Observations over the Tibetan Plateau. Journal of Climate, 26: 206-214. https://doi.org/10.1175/JCLI-D-12-00056.1
Bauer, T. J. (2020). Interaction of Urban Heat Island Effects and Land–Sea Breezes during a New York City Heat Event, Journal of Applied Meteorology and Climatology, 59(3): 477-495. https://doi.org/10.1175/JAMC-D-19-0061.1
Carnesoltas, M. (2002). La Circulación local de brisas de mar y tierra. Conceptos fundamentales. Revista Cubana de Meteorología, 9:39-59. http://rcm.insmet.cu/index.php/rcm/article/view/340
Castillo Morales, F.M., Herrera Vásquez, G., Dagua Paz, C. J., Arzuza Monterrosa, C. A. y Herrera Moyano, D. (2017). Boletín Meteomarino Mensual del Caribe Colombiano No.49/Enero de 2017. Cartagena de Indias, Colombia: Dirección General Marítima. http://cecoldodigital.dimar.mil.co/2223/
Comin, A., Acevedo, O., Miglietta, M., Rizza, U. y Degrazia, G. (2015). Investigation of sea-breeze convergence in Salento Peninsula (southeastern Italy). Atmospheric Research, 160: 68-79. https://doi.org/10.1016/j.atmosres.2015.03.010
Delgado, O., Larios, S. y Ocampo, F. (1994). Breezes during some months of spring and summer in the northwest of the Gulf of California [Las brisas durante algunos meses de primavera y verano en el noroeste del golfo de California]. Ciencias Marinas, 20: 421-440. https://doi.org/10.7773/cm.v20i3.966
García, D. y Galíndez, D. (2018). Puerto de Urabá: Oportunidad logística para las exportaciones en Colombia. Estudio de caso. En-Contexto, 6: 109-126. http://www.redalyc.org/articulo.oa?id=551859331004
Gustavsson, T., Lindqvist, S., Borne, K. y Bogren, J. 1995. A study of sea and land breezes in an archipelago on the west coast of Sweden. Quarterly Journal of the Royal Meteorological Society, 15: 785-800. https://doi.org/10.1002/joc.3370150706
Hernández, T. y Mercado, A. (2020). Estimación de la distribución espacial y temporal de la precipitación en el distrito de Turbo, Colombia. Tesis de grado Ingeniería Oceanográfica. Universidad de Antioquia, Facultad de Ingeniería. Medellín, Colombia. http://hdl.handle.net/10495/15278
Huamantinco, M. y Piccolo, C. (2011). Caracterización de la brisa de mar en el balneario de Monte Hermoso, Argentina. Estudios Geográficos, 72: 461-475. https://doi.org/10.3989/estgeogr.201118
Jiménez, M. (2014). Validación de la capacidad del modelo "Weather Research and Forecasting" para pronosticar lluvia intensa, usando el método orientado a objetivos y tablas de contingencia. Tesis C. Meter. Universidad Nacional de Colombia, Bogotá, Colombia. https://repositorio.unal.edu.co/handle/unal/54576
Jiménez, P. A., y Dudhia, J. (2013). On the Ability of the WRF Model to Reproduce the Surface Wind Direction over Complex Terrain, Journal of Applied Meteorology and Climatology, 52(7): 1610-1617. https://doi.org/10.1175/JAMC-D-12-0266.1
Kazakov, A., Lezhenin, A. y Speranskiy, L. (1996). Resultados Preliminares del Estudio de la Capa Límite Mesometeorológica de la Atmósfera en la Costa Norte Colombiana aplicando un Modelo Numérico. Boletín Científico CIOH N°17: 17-26, https://doi.org/10.26640/22159045.81
Lalas, D., Asimakopoulos, D., Deligiorgi, D. y Helmis, C. (1983). Sea-breeze circulation and photochemical pollution in Athens, Greece. Atmospheric Environment,17:1621-1632. https://doi.org/10.1016/0004-6981(83)90171-3
Lin, Y., Cao, D., Lin, N., Xue, W., Xu, S., Zhao, Y., et al. (2019). Characteristics and simulation biases of corkscrew seabreezes on the east coast of China. Journal of Geophysical Research: Atmospheres, 124: 18–34. https://doi.org/10.1029/2017JD028163
Manta, G. (2017) Caracterización de la brisa marina en Uruguay, Montevideo. Tesis de maestría en Geociencias. Universidad de la República de Uruguay. Facultad de Ciencias. Montevideo, Uruguay. https://hdl.handle.net/20.500.12008/21451
Miller, S., Keim, B., Talbot, R. y Mao, H. (2003(. Sea breeze: Structure, forecasting, and impacts. Reviews of Geophysics, 41: 312-320. https://doi.org/10.1029/2003RG000124
Moreno Calderón, M., Pico Hernández, S. A., Dagua Paz, C. J., Herrera Moyano, D. P. y Gonzales Montes, S. (2020). Boletín Meteomarino Mensual del Caribe Colombiano No.86 / Febrero de 2020. Cartagena de Indias D.T. y C., Colombia: Dirección General Marítima. https://doi.org/10.26640/23394099.86.2020
Moreno, J. y Muñoz, A. (2006). Desarrollo de un sistema de medición de parámetros oceanográficos y de meteorología marina, para el litoral Caribe y Pacífico Colombiano. Boletín científico CIOH N°24: 148-157. https://doi.org/10.26640/22159045.156
Parajuli, S. P., Stenchikov, G. L., Ukhov, A., Shevchenko, I., Dubovik, O., Lopatin, A. (2020). Aerosol vertical distribution and interactions with land/sea breezes over the eastern coast of the Red Sea from lidar data and high-resolution WRF-Chem simulations. Atmospheric Chemistry and Physics, 20(24): 16089-16116, https://doi.org/10.5194/acp-20-16089-2020
Pattiaratchi CH. y Masselink, G. (1997). Sea Breeze Effects on Nearshore Coastal Processes, 25th International Conference on Coastal Engineering, New York, American Society of Civil Engineers, 4:4200-4213, https://doi.org/10.1061/9780784402429.325
Pérez, A., Ortiz, J., Bejarano, L., Otero, L., Restrepo, J. y Franco, A. (2018). Sea breeze in the Colombian Caribbean coast. Atmósfera, 31: 389-406. https://doi.org/10.20937/ATM.2018.31.04.06
Pielke, R. y Segal, M. (1986). Mesoscale Circulations Forced by Differential Terrain Heating. In: Ray P.S. (eds) Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, MA. 516-548. https://doi.org/10.1007/978-1-935704-20-1_22
Posada-Marín, J.; Rendón, A.; Salazar, J. F.; Mejía, J. y Villegas, J. C. (2018). WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: Implications for GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, 52: 3609-3629. https://doi.org/10.1007/s00382-018-4403-0
Rani, I., Ramachandran, R., Subrahamanyam, B., Alappattu, D. y Kunhikrishnan, P. (2010). Characterization of sea/land breeze circulation along the west coast of Indian sub-continent during pre-monsoon season. Atmospheric Research, 95: 367-378. https://doi.org/10.1016/j.atmosres.2009.10.009
Ribeiro, F., Oliveira, A., Soares, J., de Miranda, R., Barlage, M., Chen, F., (2018). Effect of sea breeze propagation on the urban boundary layer of the metropolitan region of Sao Paulo, Brazil, Atmospheric Research, 214:174-188 https://doi.org/10.1016/j.atmosres.2018.07.015
Salvador, N., Loriato, A. G., Santiago, A., Albuquerque, T. T. A., Reis, N. C., Jr., Santos, J. M., Landulfo, E., Moreira, G., Lopes, F., Held, G., Moreira, D. M. (2016). Study of the thermal internal boundary layer in sea breeze conditions using different parameterizations: Application of the WRF model in the Greater Vitória region. Revista Brasileira de Meteorologia, 31: 593-609. https://doi.org/10.1590/0102-7786312314b20150093
Salvador, R. y Millán, M. (2003). Análisis histórico de las brisas en Castellón. TETHYS, Revista de meteorología, 2: 21-19. https://dialnet.unirioja.es/servlet/articulo?codigo=7411981
Sills, D. M. L. (1998). Lake and land breezes in southwestern Ontario: Observations, analyses and numerical modeling. PhD dissertation. York University. https://api.semanticscholar.org/CorpusID:128731413
Simpson, J. (1994). Sea breeze and local winds. Cambridge. https://www.cambridge.org/0521025958
Steele, C. J., Dorling, S. R., Von Glasow, R., Bacon, J. (2013). Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields. Atmos. Chem. Phys., 13, 443–461, https://doi.org/10.5194/acp-13-443-2013
Downloads
Published
Issue
Section
License
Copyright (c) 2022 CIOH Scientific Bulletin

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.