Solution Alternatives for the Mitigation of the Erosive Phenomena at Playa Salguero, Colombian Caribbean
DOI:
https://doi.org/10.26640/22159045.2025.650Keywords:
Marine climatology, Hidrodynamics, Coastal dynamics, Erosion, Sedimentation, TomboloAbstract
Playa Salguero (south of Gaira Bay, Magdalena) coastline has experienced an average retreat of 15.16 meters (1.17m/año) between 2008 and 2021, based on a multi-temporal shoreline analysis which determines its current erosion state. The foreshore has been squeezed additionally by the near real estate infrastructure, risking the effective/public space, thus materializing a coastal erosion study case. This is numerically proven by determining sediment transport rates, transversal (0.97m3/m.l. per hour of storm) as well as longitudinal (order of 97820m3/year) at the most critical erosion sector, justifying some line of action orientated in mitigating the problematic. Offshore breakwater design configurations and beach tombolo conformed of hydraulic fill of compatible sediment are proposed, which allows to effectively reduce sediment net loss, adding resilience to the beach.
Downloads
References
Bouws, E., Günther, H., Rosenthal, W., & Vincent, C. L. (1985). Similarity of the Wind Wave Spectrum in Finite Depth Water. Journal of Geophysical Research, 90, 975-986.
Caldwell, P., Merrifield, M., & Thompson, P. (2015). Sea level measured by tide gauges from global oceans. Obtenido de The Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for Environmental Information, Dataset, doi:10.7289/V5V40S7W: http://www.ioc-sealevelmonitoring.org/station.php?code=sama
Castellanos, O., Mínguez, R., Tomás, A., Méndez, F., Losada, I., Medina, R., . . . Pérez, J. (Abril de 2015). Análisis Matemático y Estadístico de Variables Ambientales (AMEVA v.1.4.2). Santander, Cantabria, España.
CERC. (1984). Shore Protection Manual (Vol. I). Washington D.C.: U.S. Government Printing Office. Department of the Army. U.S. Army Corps of Engineers.
De Vriend, H., & Stive, M. (1987). Quasi-3D Modelling of Nearshore Currents. Coastal Engineering, 11, 565-601.
Dean, R. G. (1977). Equilibrium Beach Profiles: U.S. Atlantic and Gulf Coasts. Univsersity of Delaware, Department of Civil Engineering. Newark, Delaware: Ocean Engineering Report No. 12.
Díaz, G., & Requejo Landeira, S. (2011). Programa para la determinación de las características del oleaje en rotura. Santander, Cantabria, España.
Dimar-CIOH. (2013). Atlas Geomorfológico del Litoral Caribe Colombiano (Vol. 8). Cartagena de Indias: Dimar, Serie Publicaciones Especiales CIOH.
Garner, G., Hermans, T., Kopp, R., Slangen, A., Edwards, T., Levermann, A., . . . Pearson, B. (2021). IPCC AR6 Sea Level Projections. Version 20210809. Dataset accessed [2023-12-01]. Obtenido de https://doi.org/10.5281/zenodo.5914709
GIOC & DGCM. (2002). Sistema de Modelado Costero, Versión 2.5. Obtenido de SMC-IHCantabria: https://smc.ihcantabria.es/SMC25/
GIOC. (2001). Manual de Referencia - Petra 2.0. Universidad de Cantabria, Grupo de Ingeniería Oceanográfica y de Costas, Santander.
Hallermeier, R. J. (1978). Uses for a calculated limit depth to beach erosion. Proceedings of the Sixteenth Coastal Engineering Conference. American Society of Civil Engineers, Ch. 88, pp. 1493-1512.
IHCantabria. (2013). Hipercubo MAXDISS. Versión 3.0.
INGEOMINAS; ECOPETROL ICP; INVEMAR. (2008). Evolución Geohistórica de la Sierra Nevada de Santa Marta. Geomorfología de la zona costera y piedemonte occidental. Magdalena. Programa de Geociencias Marinas y Costera - GEO.
INVEMAR & CORPAMAG. (2015). Primer informe de actividades del convenio especial de cooperación No. 14 de 2014 celebrado entre CORPAMAG e INVEMAR, para entender diferentes tipos de emergencias ambientales. Santa Marta.
INVEMAR. (2021). Concepto técnico sobre la problemática de erosión costera en playa Salguero, los daños ambientales causados por un espolón construido a la altura del edificio Playa Linda y las posibilidades de restauración ambiental de la playa. Santa Marta: Programa GEO_INVEMAR.
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds)], Geneva, Switzerland.
IPCC. (2021). Ocean, Cryosphere and Sea Level Change. En Climate Change 2021 - The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (págs. 1211-1362). Cambridge, United Kingdom and New York, USA: Cambridge University Press. doi:10.1017/9781009157896.011
Iribarren, R., & Nogales, C. (1949). Protection des Ports. XVII International Naval Congress. Section II, Communication, IV, págs. 31-80. Lisbon.
Kirby, J. T. (1986). Higher-Order Approximations in the Parabolic Equation Method for Water Waves. Journal of Geophysical Research, 91(C1), 933-952.
Kopp, R. E., Garner, G. G., Hermans, T. H., Jha, S., Kumar, P., Reedy, A., . . . Smith, C. (2023). The Framework for Assessing Changes To Sea-Level (FACTS) v1.0: a platform for characterizing parametric and structural uncertainty in future global, relative, and extreme sea-level change. Geoscientific Model Development, 16(24), 7461-7489. Obtenido de https://doi.org/10.5194/gmd-16-7461-2023
O'Reilly, W. C., & Guza, R. T. (1991). Comparison of Spectral Refraction and Refraction-Diffraction Wave Models. Journal of Waterway Port, Coastal and Ocean Engineering, 117(3), 199-215.
Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences 28.
Ricaurte-Villota, C., Coca-Domínguez, O., González, M., Bejarano-Espinosa, M., Morales, D., Correa-Rojas, C., . . . Arteaga, M. (2018). Amenaza y vulnerabilidad por erosión costera en Colombia: enfoque regional para la gestión del riesgo. Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" - INVEMAR-. Santa Marta, Colombia: Serie de Publicaciones Especiales de INVEMAR #33.
Simmons, A., Uppala, S., Dee, D., & Kobayashi, S. (2006). ERA-Interim: New ECMWF reanalysis products from 1989 onwards.
Thieler, E., Himmelstoss, E., Zichichi, J., & Ergul, A. (2005). Digital Shoreline Analysis System (DSAS). Report 2008-1278. U.S. Geological Survey.
Thornton, E. B., & Guza, R. (1983). Transformation of Wave Height Distribution. Journal of Geophysical Research, 88(C10), 5925-5938.
Winyu, R., & Tomoya, S. (1998). Energy Dissipation Model for Irregular Breaking Waves. Coastal Engineering Journal, 40(4), 327-346.
WW3DG. (2019). The WAVEWATCH III® Development Group: User manual and system documentation of WAVEWATCH III® version 6.97. Tech. Note 333, NOAA/NWS/NCEP/MMAB, 326 pp. + Appendices. College Park, MD, USA.
Published
Issue
Section
License
Copyright (c) 2025 CIOH Scientific Bulletin

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.