Galerazamba Spit morphological evolution, Colombian Caribbean
DOI:
https://doi.org/10.26640/22159045.282Keywords:
Galerazamba, Sand bar, Spit, Currents, Ocean wave, Multitemporal analysis, Morphology, Colombian CaribbeanAbstract
In order to analyze the Galerazamba spit morphological evolution as well as its barrier systems classification; we analyzed us historical shoreline records and currents patterns according historical changes from 1948 until 2014. It was established that the first morphological shape corresponding the Magdalena river channeling in 1936 and the mud volcano eruption over the spit in 1938 is a Fly Spit. After the eruption, the lack of sediment in the system due to the river channeling was evident the sediment readjustment parallel to Galerazamba ́s shoreline, generating several sand barriers types over time due to littoral drift and local sediment supplies, moring towards its present morfology which corresponds to a closed sand bar called Bay-mouth Barrier.Downloads
References
[2] Davidson-Arnott, R.G.D. Introduction to Coastal processes and Geomorphology. Cambridge University Press. 442 pp. 2010.
[3] Petersen, D., Deigaard, R., Fredsøe, J. Modelling the morphology of sandy spits. Coastal Engineering 55, 671–684. 2008.
[4] Evans, O.F. The Origin of Spits, Bars, and Related Structures. The Journal of Geology, Vol. 50, No. 7, pp. 846-865. 1942.
[5] Davis, R.A. A New Look at Barrier-Inlet Morphodynamics. Journal of Coastal Research. 69, 1–12. 2013.
[6] Martínez, J.O.; Pilkey, O.H., JR & Neal, W.J. Rapid Formation of Large Coastal Sand Bodies after Emplacement of Magdalena River Jetties, Northern Colombia. Environ Geol Water Sci Vol. 16, No. 3, 187-194. 1990.
[7] Correa, I.D., Alcántara-Carrió, J. & González R, D.A. Historical and Recent Shore Erosion along the Colombian Caribbean Coast. Journal of Coastal Research, Special Issue 49. 2005.
[8] Ramirez, J. El volcán submarino de Galerzamaba. Revista de la Academia Orejarena, et al.: Evolución morfológica espiga de Galerazamba143 Colombiana de Ciencias Exactas, Físico-químicas y Naturales, 10, 301-314. 1959.
[9] Restrepo J.C., Schrottke, K., Traini, C., Ortíz, J.C., Orejarena, A., Otero, L., Higgins, A., Marriaga, L. Sediment Transport Regime and Geomorphological Change in a High Discharge Tropical Delta (Magdalena River, Colombia): Insights from a Period of Intense Change and Human Intervention (1990-2010). Journal of Coastal Research (DOI: 10.2112/JCOASTRES-D-14-00263.1). 2015.
[10] Otvos E.G. Coastal barriers—Nomenclature, processes, and classification issues. Geomorphology, 139-140, 39-52 (Doi:10.1016/j.geomorph.2011.10.037). 2012.
[11] Centro de Investigaciones Oceanográficas e Hidrográficas (CIOH). Climatología de los principales puertos del Caribe colombiano. Turbo–Golfo de Urabá. 2010.
[12] Andrade, C.A. The Circulation and Variability of the Colombian Bassin in the Caribbean Sean. Wales, England: University of Wales, Doctoral thesis, 225 pp. 2000.
[13] Molares, R. Clasificación e identificación de los componentes de marea del Caribe colombiano. Bol. Cient. CIOH 22, 105-114. 2004.
[14] Osorio A., Montoya R. Reconstrucción de cuarenta años de datos de oleaje en el mar Caribe colombiano empleando el modelo WWIII™ y diferentes fuentes de datos. Bol. Cient. CIOH 27, 37-56. 2009.
[15] Dirección General Marítima–Dimar. Atlas Geomorfológico del Litoral Caribe Colombiano. (ISBN 987-958-57723-7-3), 227 pp. 2013.
[16] Tolman H.L. Validation of WAVEWATCH III version 1.15 for a global domain. National Oceanic and Atmospheric Administration, Environmental Modeling Center – Ocean Modeling Branch. Technical Note. 33 pp. 2002a.
[17] Tolman H.L. Distributed-memory concepts in the wave model WAVEWATCH III. Parallel Computing. 28, 35-52 pp. 2002b.
[18] Tolman H.L. Effects on numerics on a physics of a thirdgenerationwind wave model. J. Phys. Oceanogr. 22, 1095-1111. 1992.
[19] Orejarena, A., Otero, L. Dagua, C. Rocha, L. y Herrera, E. Determinación del clima de oleaje medio y extremal en el extremo norte del golfo de Urabá. Bol. Cient. CIOH, 31:109-124. 2013.
[20] Booij, N., Ris, R.C. Holthuijsen L.H. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research, Vol. 104, No. C4, 7649-7666 pp. 1999.
[21] Izaguirre, C. Estudio de la variabilidad climática de valores extremos de oleaje [Tesis doctoral]. Cantabria: Universidad de Cantabria. Departamento de Ciencias y Técnicas del Agua y del Medio Ambiente. 2010.
[22] GIOC, Grupo de Ingeniería Oceanográfica y de Costas 2003h. Modelo de corrientes de rotura en playas (COPLA-MC/SP). Dirección General de Costas-Ministerio de Medio Ambiente y Universidad de Cantabria, España, 77 pp.
[23] GIOC, Grupo de Ingeniería Oceanográfica y de Costas 2003h. Modelo de propagación de oleaje espectral (Oluca-SP). Dirección General de costas-Ministerio de Medio Ambiente y Universidad de Cantabria, España, 170 pp.
[24] GIOC, Grupo de Ingeniería Oceanográfica y de Costas 2003j. 2DH Morphodynamic Evolution Model for Near Shore Areas (MOPLA). State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 262 pp.
[25] Pajak, M.J. & Leatherman S. The High Water Line as Shoreline Indicator. Journal of Coastal Research, Vol. 18, No. 2, pp. 329-337. 2002.
[26] Smith, G.L. & Zarillo, G.A. Calculating Long-Term Shoreline Recession Rates Using Aerial Photographic and Beach Profiling Techniques. Journal of Coastal Research, Vol. 6, No. 1, pp. 111-120. 1990.
[27] Stockdon, H.F., Sallenger, A.H., List, J.H. & Holman, R. A. Estimation of Shoreline
Bol. Cient. CIOH 2015; 33:123-144144Position and Change using Airborne Topographic Lidar Data. Journal of Coastal Research, Vol. 18, No. 3: 502-513. 2002.
[28] FitzGerald, D.M. & Buynevich, I.V. Coastal Barriers. In: Encyclopdia of Life Support System, UNESCO-EOLSS Publishers Co, Ltd. 2005.
[29] Ramírez, J. Los diapiros del mar Caribe colombiano. Memorias del I Congreso Colombiano de Geología. Bogotá, 31-39. 1969.
[30] Hayes M.O. & FitzGerald D.M. Origin, Evolution, and Classification of Tidal Inlets, Journal Coast Research. 69, 14–33. 2013.
[31] Dean, R.G. & Dalrymple, R.A. Coastal processes: With engineering applications. New York: Cambridge University Press. 2002.[32] Masselink, G. & Short, A. Effect of Tide Range on Beach Morphodynamic and Morphology: A Conceptual Beach Model. Journal of Coastal Research. 1993.
[32] Masselink, G. & Short, A. Effect of Tide Range on Beach Morphodynamic and Morphology: A Conceptual Beach Model. Journal of Coastal Research. 1993.
Downloads
Published
Issue
Section
License
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.