IDENTIFICACIÓN DE FLORECIMIENTOS FITOPLANCTÓNICOS CON EL ÍNDICE DE PROPIEDADES ÓPTICAS INHERENTES POI ÍNDICE: CASO DE ESTUDIO EL LAGUITO- CARTAGENA
Florecimientos Fitoplanctónicos en Cartagena
DOI:
https://doi.org/10.26640/22159045.2020.513Keywords:
florecimientos fitoplanctónicos, índice bio-óptico, fitoplancton, zooplancton, El LaguitoAbstract
In the Cartagena Bay, phytoplanktonic blooms have been documented for more than three decades, as result of the impacts generated by anthropogenic activities. One of these events was presented on August 2019 in a body of water called El Laguito, located in Castillogrande sector. To confirm the event, physical-chemical, biological and optical parameters were evaluated in 12 stations. The Inherent Optical Properties index (POI index) identified one station in active bloom, another in increase or decrease bloom conditions and ten in non-bloom condition. The station in active bloom with the highest index value (2.76) reported densities that exceeded 5.80 x 106 cells L-1 of Gymnodinium sp., 41.47 mg m-3 of chla-a, 9.86 pH units and 8.63 mg L -1 dissolved oxygen. Therefore, the POI index constitutes a rapid and low-cost measurement tool for phytoplankton monitoring programs, as well as for monitoring the evolution of phytoplankton blooms.Downloads
References
Aguilar-Maldonado, J., E. Santamaría-del-Ángel, A. González-Silvera, O. Cervantes-Rosas, L. Lopez, A. Gutiérrez-Magness, S. Cerdeira-Estrada and M.T Sebastiá-Frasquet., 2018. Identification of Phytoplankton Blooms under the Index of Inherent Optical Properties (IOP Index) in Optically Complex. Water., 10(2), 1–17. https://doi.org/10.3390/w10020129.
Anderson, D.M., Hoagland, P., Kaoru, Y., White, A.W. (2000). Estimated annual economic impacts from harmful algal blooms (HABs) in the United States. Technical Report WHOI-2000-11, Woods Hole Oceanographic Institute, Woods Hole, Mass.
Baek, S. H., Sung-Su, H., Shin-Young, S., Hae-Ok, L. y Myung-Soo, H. 2009. Effects of Zooplankton Grazing on the Suppression of Harmful Algal Blooms by the Rotifer Brachionus calyciflorus in Freshwater Ecosystems. Korean J. Limnol 42 (1), 67-74.
Bricaud, A., Claustre, H., Ras, J., Oubelkheir, K., 2004. Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J. Geophys. Res., 109: C11010. https://doi.org/10.1029/2004JC002419
Calbet, A., Vaqué, D., Felipe, J., Vila, M., y Monserrat, M. 2003. Relative grazing impact of microzooplankton and mesozooplancton on a bloom of the toxic dinoflagellate Alexandrium minutum. Mar Ecol Prog Ser 259, 303–309. https://doi:10.3354/meps259303.
Calvo-Vargas, E., Arguedas-Rodríguez, M. s.f. Monitoreo de las Floraciones Algales Nocivas (FANs) en el Golfo de Nicoya, Puntarenas, Costa Rica. Escuela de Ciencias Biológicas, Estación de Biología Marina, Laboratorio de Fitoplancton Marino. 24 pp.
Celis, S., Mancera, E., y León, J.A. 2008. Evaluación de la rotiferofauna presente en el complejo de pajarales durante la época lluviosa, departamento de Magdalena, Colombia. Acta biol. Colomb 13 (2), 23 – 40.
Cetinic, I., Mobley C., Roesler C., Boss, E., Taylor, L, 2018. Optical Constituents of the Ocean: phytoplankton. Ocean Optics Web Book. http://www.oceanopticsbook.info/view/optical_constituents_of_the_ocean/_phytoplankton
Cota, G.F., G. Harrison, T. Platt, S. Sathyendranath, V. Stuart. 2003. Bio-optical properties of the Labrador Sea. J. Geophys. Res. 108, 3228. https://doi.org/10.1029/2000JC000597.
Dimar-CIOH., 2011. Catálogo de fitoplancton de la Bahía de Cartagena, Bahía Portete, y agua de lastre. Dirección General Marítima-Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe. Ed. Dimar, Serie de publicaciones especiales CIOH Vol. 5, Cartagena de Indias, Colombia 109 p.
Dorado-Roncancio, J.D. Composición y distribución del zooplancton en el sistema cenagoso del Parque Via Isla Salamanca en dos momentos hidrológicos. Tesis de Pregrado en Biología Marina. Universidad Jorge Tadeo Colombia. Bogotá, 78 pp.
Gaviria, S. 2000. Guía de Laboratorio para identificación de Cladóceros, Copépodos y Rotíferos. Curso Sistemática del Zooplancton (Copepoda, Cladocera, Rotatoria) de las aguas continentales de Colombia. Universidad de Antioquia.
Hinga, K.R. 1992. Co-occurrence of dinoflagellate blooms and high pH in marine enclosures. Mar. Ecol. Prog. Ser. 86, 181-187.
Hu, Ch., Sathyendranath, S., Shutler, J.D., Brown, C.W., Moore, T.S., Craig, S. E., Soto I., Subramaniam, A., 2014. Detection of Dominant Algal Blooms by Remote Sensing, IOCCG Reports No. 15, IOCCG, 39-70.
IOCCG (2014). Phytoplankton Functional Types from Space. Sathyendranath, S. (ed.), Reports of the International Ocean-Colour Coordinating Group, No. 15, IOCCG, Dartmouth, Canada.164 p.
Kirk, J.T.O. 2011. Light and photosynthesis in aquatic ecosystems. 3er edition. Cambridge University Press, Cambridge. 649p.
Kurekin, A.A., Miller, P.I., Van der Woerd, H.J., 2014. Satellite discrimination of Karenia mikimotoi and Phaeocystis harmful algal blooms in European coastal waters: Merged classification of ocean colour data. Harmful Algae, 31, 163–176. https://doi.org/10.1016/j.hal.2013.11.003.
Mancera, J. & Vidal, L. (2007). Informe de Colombia. 27-30. En: Mancera, J. E. (Ed.). IOC Regional Science Planning Worshop on Harmful Algal Blooms in Iocaribe- ANCAIV. Universidad Nacional de Colombia sede Caribe, San Andrés. 81.
Millán-Nuñez, E.; Millán-Nuñez, R. 2010.Specific Absorption Coefficient and Phytoplankton Community Structure in the Southern Region of the California Current during January 2002. J. Oceanogr., 66,719–730.
Mitchell, B.G., Kahru, M., Wieland, J., Stramska, M., 2002. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In: Mueller JL, Fargion GS, McClain R (eds) Ocean Optics protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols. NASA/TM-2003-211621, NASA Goddard Space Flight Center. Greenbelt, MD. (Chapter 4), 39–60. Palma, E.D., Matano, R.P., 2012. A numerical study of the Mage.
Owre, H. B. y Foyo, M. 1967. Copepods of the Florida Current. Fauna Caribaea. Numero I. Crustacea, Parte I: Copepoda. Institute of Marine Science, University of Miami. 137 p.
Santamaría-del-Ángel, E., González-Silvera, A., Millán-Núñez, R., Callejas-Jiménez, M. E., Cajal-Medrano, R.,2011. Case Study 19. Determining Dynamic Biogeographic Regions using Remote Sensing Data. Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management (2011), EU PRESPO and IOCCG, Dartmouth, Canada, 293 p.
Santamaría-del-Ángel, E., Soto, I., Wolny, J., Cerdeira-Estrada, S., Cajal-Medrano, R., Muller-Karger, F., Cannizzaro, J., Padilla-Rosas, Y.X.S., Mercado-Santana, A., Gracia-Escobar, M.F., Alvarez-Torres, P., Ruiz-de-la-Torre, M.C., 2015. Phytoplankton Blooms : New Initiative Using Marine Optics as a basis for monitorin programs. Coastal Ecosystems: Experiences and Recommendations for Environmental Monitoring Programs: 57-88. Nova Science Publishers, Inc.
Sars, E., Ferrario, M. y Reguera, B. 2002. Floraciones Algales Nocivas en el Cono Sur Americano. Instituto Español de Oceanografía. España. 305 pp.
Talavera, V. L.M Zapata, D. Sánchez. 1998. Influencia del pH sobre los organismos acuáticos. 4 Boletín Nicovita. 4 pag.
Uitz, J., Claustre, H., Morel, A., Hooker, S. B., 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. Journal of Geophysical Research: Oceans, 111(C8005). https://doi.org/10.1029/2005JC003207.
Wu, J., H. Hong, S. Shang, M. Dai, Lee, Z., J. Wu, H. Hong, S. Shang, M. Dai and Z.L.Variation. 2007. Variation of phytoplankton absorption coefficients in the northern South China Sea during spring and autumn. Biogeosciences Discussions, 4(3):1555-1584.
Xi, H., Hieronymi, M., Röttgers, R., Krasemann, H., Qiu, Z., 2015. Hyperspectral differentiation of phytoplankton taxonomic groups: a comparison between using remote sensing reflectance and absorption spectra. Remote Sens. 7, 14781–14805. https://doi.org/10.3390/rs71114781.
Xi, H., Hieronymi, M., Krasemann, H., Röttgers, R., 2017. Phytoplankton group identification using simulated and in situ hyperspectral remote sensing reflectance. Frontiers in Marine Science, 4, 272. https://doi.org/10.3389/fmars.2017.00272.
[1] http://fundacionbahia.org/es/proyectos/recuperacion-del-laguito/. Consultado 31/08/2019
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Boletín Científico CIOH

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.