Potential in Colombia for better use of the ocean non-conventional energy
DOI:
https://doi.org/10.26640/22159045.145Keywords:
Non Conventional Energy, Wave Climate, Directional Wave Buoy, Tidal Currents, Thermal GradientAbstract
Colombia's geography sites which have greater potential for efficient and economically competitive electricity generation from nonconventional the ocean sources, due to their oceanographic conditions are evaluated in this article. Tidal currents were evaluated at Malaga Bay (Bahía Málaga) on the Pacific Ocean, finding that in order to exploit this type of energy some modifications to the access channels were needed to reach the required current velocity. This alternative was rejected because of the great magnitude of the modification works and negative impact on the bay. On the Guajira peninsula, on the Caribbean Sea, the energy content on the wind waves was valuated, finding by indirect methods an annual mean energy flux of 11.67KWm. A lime series of 28 days collected with a directional wave buoy on Bocas de Ceniza Barranquilla was analyzed, finding a mean energy flux of 16.11KWm', over the minimum levels (15KWm') needed for economic electricity generation. On San Andres island the thermal gradient of the ocean was analyzed, finding the oceanographic conditions required to take advantage of this energy, with capacity to assure the complete electricity demand on the island.Downloads
References
[2] Pulido A. Repsol y el motor del capitalismo global. No.22 de la revista Pueblos. Especial Multinacionales, p. 29-31; 2006.
[3] George R, Norrish Wand Keightley E. The conditions of reaction of hydrogen with sulphur. Part V. Photochemical union, J. Chem. Soc., Trans.125,20702081;1924.
[4] Medina A, Lugo E, y Novelo A. Contenido mineral del tejido foliar de especies de manglar de la Laguna de Sontecomapan.(Veracruz, México) y su relación con la salinidad. E. Biotrópica, Vol. 27, No. 3, p. 317-323; 1995.
[5] Reali M. Submarine hydro-electro-osmotic power plants for an efficient exploitation of salinity gradients Energy (UK), vol. 6, Mar. 1981, p. 227-231; 1981.
[6] Strellec K. Diversifying energy industry risk in the Gulf of Mexico, Coastal Marine Institute, Lousiana State University, on-going research; 2007.
[7] Maser M. Tidal Energy a primer. Vancouver (BC): Blue Energy Canada Inc.; 2004.[citada 2006 jun 20], pl 2. Disponible en: http://www.bluenergy.com/TidalEnergyPrimer.pdf.
[8] Torres R. Informe procedimiento técnico para establecer la línea de más alta marea en la Boquilla Municipio de Cartagena. Documento interno CIOH; 2006.
[9] Otero L. Determinación del régimen medio y extremal del nivel del mar para la Bahía de Buenaventura. Boletín Científico CCCP No. 11: 30-41; 2004.
[10] SWECO, Simulaciones de las Corrientes Bahía Málaga; 1985.
[11] Army Corps of Engineers. The Coastal Engineering Manual; 2001.
[12] Programa de energía por olas de Dinamarca. Disponible en Internet: www.waveenergy.dk/wave_forside/4english/papers/paper_aau00.pdf.
[13] Airy, G. B. Tides and Waves, Encyc. Metrop., Article 192; 1845. pp 241-396.
[14] Comisión Europea. Red temática Europea para la energía por olas. Programa de energía, medio ambiente y desarrollo sostenido. Disponible en Internet: www.wave-energy.net.
[15] Young I. Wind and Wave Climate. Reino Unido. Software; 2000.
[16] Gulev S, y Hasse L. Centro Nacional de Investigación Atmosférica de los Estados Unidos. North Atlantic Wind Waves and Wind Stress. Disponible en Internet: www.dss.ucar.edu/datasets/ds540.1/1998.
[17] Lonin S, Lonina I, y Tuchkovenko Y. Utilización del modelo Nedwam para el cálculo y pronóstico del oleaje en el Mar Caribe. Boletín Científico CIOH No. 17: p. 37-45; 1996.
[18] Natural Energy Laboratory of Hawaii. Disponible en Internet: www.nelha.org/otec.html#otec.
[19] Vega L. Ocean thermal energy conversion. Enciclopedia de energía, tecnología y el medio ambiente. Nueva York: Wiley e Hijos; 2002. p 2104-2119.
[20] Archipielago's Power & Light. 2002. Disponible en Internet: www.apl.com.co/.
[21] Physical Oceanography Distributed Active Archive Center. NASA. Información general. Disponible en Internet: http://podaac.jpl.nasa.gov/info/.
[22] University Corporation for Atmospheric Research. Data Support Section. World Ocean Atlas; 1998. Disponible en Internet: www.dss.ucar.edu/datasets/ds285.0/data/woa98/.
[23] Andrade C. Circulation and Variability of the Colombian Basin in the Caribbean Sea, Ph. D. thesis, p. 223 Univ. of Wales at Menai Bridge, U.K.; 2000.
[24] Torres R. Estudio del potencial en Colombia para el aprovechamiento de la energía No Convencional de los Océanos. Trabajo de Investigación. Disponible biblioteca Escuela Naval Almirante Padilla; 2003.
Downloads
Published
Issue
Section
License
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.